Lecture 23

A. Hydrodynamic interferometry
B. Revisitation of QM pilot-wave theory

C. New hydrodynamically-inspired p-w theories



® cquate quantum velocity of probability  and particle velocity

e solve Schrodinger’s equation for , from which 1s computed

® solve trajectory equation

NONLOCAL

® as an attempt to restore reality to QM, i1t drew the ire of Copenhagen adherents

Ficure 1: An ensemble of trajectories for the two-slit experiment, uniform in the slits.
(adapted by Gernot Bauer from Philippidis, Dewdney, & Hiley 1979: 23, fig. 3)

¢ 1n double-slit diffraction, no particles cross the centerline owing to form of Q



Surreal trajectories: Theory
- Englert, Sully, Siissman and Walther (ESSW). 1992

e proposed an interference experiment intended to expose (a) — Bohmian trajectory
the shortcomings of Bohmian mechanics — Trajectory aticipated by ESSW
B
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Bohmian trajectories are at odds with common sense:
they are not real, they are surreal.’ I

¢ their reasoning was criticized by Aharanov & Vaidman |
(1996), who concluded: . |

" ESSW does not show that Bohmian mechanics is inconsistent, only that Bohmian
trajectories behave differently from what one would expect classically.’

# What one expects classically depends on how
much one knows about classical mechanics.



Surreal trajectories: Experiments

e cxperimental investigations using “weak measurement’ found mean
trajectories consistent with the surreal trajectories (Mahler et al., 2016)

“We demonstrate that the trajectories seem surreal
only if one ignores their manifest nonlocality.’

Copenhagen

e surreal trajectories are taken as evidence of nonlocality

¢ the particle 1s entangled with the measurement device

Bohmian mechanics

(a) — Bohmian trajectory
— Trajectory anticipated by ESSW
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e surreal trajectories are evidence of the nonlocal quantum potential Q

"Might we achieve an analogous effect with pilot-wave hydrodynamics,

which is undeniably local?’




Real surreal trajectories

drop launched toward the beam-
splitter goes left/right 50% of the
time

owing to the interaction between
the distant barrier and its pilot
wave, the droplet never crosses
the centerline, resulting 1n a real,
“surreal” trajectory.

if one barrier 1s removed, the pilot-
wave 1s no longer effected by it,
and the droplet follows the
expected trajectory




(a) — Bohmian trajectory (b)
— Trajectory anticipaled by ESSW

Real surreal trajectories

Experiments N\
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e arise in the walker system at high Me !

- Frumkin, Struyve, Darrow, JB (PRA 2022) i

The designation of Bohmian trajectories as surreal is based on misconceptions
concerning the limitations of classical mechanics and a lack of familiarity with
pilot-wave hydrodynamics.



Real surreal trajectories: Simulations of Dave Darrow

e undertaken with the numerical model of Faria (2017)

Dependence on impact parameter at y/y, = 0.902
50 \




Real surreal trajectories: Simulations

e trajectories and an associated mean pilot-wave field as deduced from a Gaussian
distribution of impact parameters, an ensemble of initial conditions
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e a dynamical reformulation of a statistical theory deduced by equating

the particle velocity with the quantum velocity of probability

¢ 1t would thus be natural that the Bohmian trajectories be average values

- consistent with “weak measurement’ expts (Steinberg et al. 2016)

® in response to Keller’s criticism, Bohm retreated to the stance that Bohmian

trajectories were mean trajectories

e Bohm & Vigier (1953) sought a stochastic element to describe the departures
from the mean (like Brownian motion of gas molecules about streamlines)

® if bouncing drops are a quantum analog, then their mean 4
motion should be an analog of Bohmian mechanics \m\%;;:‘";",,“
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NewScientist
Seven wonders of the quantum world

From undead cats to particles popping up out of nowhere, from watched pots not boiling -
sometimes - to ghostly influences at a distance, quantum physics delights in demolishing
our intuitions about how the world works. Michael Brooks tours the quantum effects that
are guaranteed to boggle our minds.

1. Corpuscles and buckyballs

2. The Hamlet effect

3. Something for nothing M3 Bzx_ L
\ |_ ——————— — w— w— —
4. The Elitzur-Vaidman bomb tester D1

5. Spooky action at a distance

6. The field that isn’t there

Al

7. Superfluids and supersolids Path 1 1l

Path 2



The Elitzur-Vaidman Bomb Tester A o
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Path 2

¢ in the absence of a bomb (red), interference always causes photon to arrive at D1

e with bomb (blue), this interference 1s destroyed, so particle either detonates bomb

(Path 1) or arrives at D1 or D2 with equal probability

e 1f bomb is present 50% of the time, then you can detect it 25% of the time

via a particle that took Path 2, so never interacted with it



A topographic bomb

e topography plays the role of the bomb, induces surreal trajectories
® 50% of particles explode bomb, 50% diverted to the right




No bomb

e drops initially directed to right or left with equal probability by beam splitter

e without the "bomb’, all drops are directed to the left, no surreal trajectories arise



A hydrodynamic analog of the quantum Bomb tester
- Frumkin & JB, PRA (2023)

¢ submerged topography (orange) plays the role of the "bomb’
¢ 1n the absence of the bomb, all trajectories go to the left

¢ in the presence of the bomb, surreal trajectories may arise:

- the droplet’s pilot-wave interacts with the bomb, altering the droplet’s path

e 1f bomb is present S0% of the time, then 25% of the time, the droplet detects a bomb
along a path it didn’t take



"Interaction-free measurement’

® one can seemingly measure an object

without interacting with it...

... but how can that possibly be? I
Path 1

Copenhagenesque rationale Path 2

e bomb disrupts interference of wave function through alteration of W

Bohmian mechanics

e cuiding wave splits into 2 components at beamsplitter By, pilot plus empty wave

¢ when particle follows Path 2, its empty wave 1s disrupted by bomb on Path 1

Inference

¢ the effect can be simply rationalized if one concedes that the wave is real,

1n which case the measurement 1s not interaction-free




Hydrodynamic interferometry: Recap

Real surreal trajectories

" ESSW does not show that Bohmian mechanics is inconsistent, only that Bohmian
trajectories behave differently from what one would expect classically.’

e “surreal’ trajectories are not at odds with classical intuition informed by a
familiarity with pilot-wave hydrodynamics

¢ may be readily understood as a manifestation of non-Markovian pilot-wave
dynamics, with no need to invoke ~quantum nonlocality’

Interaction-free measurement

¢ a misinference necessitated by the assumption that QM 1s complete, that there
1s no underlying reality

¢ an inference that may be obviated if one concedes the reality of a guiding wave
that interacts with its environment



Brief review of quantum pilot-wave theories

¢ before we develop new classical pilot-wave theories for the microscope scale...



® cquate quantum velocity of probability  and particle velocity

e solve Schrodinger’s equation for , from which 1s computed

David Bohm e

® solve trajectory equation

NONLOCAL

e Einstein’s objection: it 1s nonlocal’ by virtue of the quantum potential Q

®* no mechanism for wave generation; no feedback of particle on field

® invoke a stochastic forcing from a “sub quantum realm’:

e particles jostle about  like Brownian motion of gas molecules about streamlines



WAVELENGTH |
NONLOCAL AD HOC . LOCAL
STOCHASTIC
FORCING ARBITRARY, ad hoc
PERTURBATION WAVE FIELD
NONE | PARTICLE VIBRATION
|



“ A freely moving body follows a trajectory that 1s orthogonal
to the surfaces of an associated wave guide”.

- Louis de Broglie (1892-1987) 7 f -

——

—

° 1s the probability wave, as prescribed by standard quantum theory
o 1s a real physical wave responsible for guiding the

particle according to his Guidance Equation:

e wave generated by internal particle vibration m

(Zitterbewegung) at the Compton frequency:

® a solution of Klein-Gordon equation triggered by oscillations in rest mass

e particle follows point of constant wave amplitude: his guidance equation yields

for a monochromatic wave
° . the particle oscillates in resonance with its guiding wave

® ncomplete: wave generation mechanism, precise form of not specified



Seek 1D solution: P(x, 1) = A(x, 1) €D where @ = kx — wt

Imaginary component of KG: (DtAt —C ZCDXAX =0 *

Particle moves along a point of constant amplitude A(x.,t) of its pilot wave:
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Use: @Dy=k and P, =-w

=g De Broglie relation:




de Broglie’s Theorem of Phase Harmony
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i “A periodic phenomenon with frequency W 1is seen by a stationary observer to {
-~ have a frequency W, / 7y and remain constantly in phase with a wave having |
frequency wcv propagatmg in the same direction with Velomty V= 5 C.”
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3 frequencies: “e¢ T T3 Wc\/l o V1= 3
PARTICLE / CLOCK APPARENT CLOCK WAVE

de Broglie wave: P(x,1) = A(x, 1) e ™)
Phase variation in progressing wave
dO = (®,+v-VO)dt =wy ' dt = w,,, dt via v=-c"—

¢ the clock remains constantly in phase with its guiding wave

m===l)  “Une grande loi de la Nature.”



de Broglie’s pilot-wave theory

fast
™o 62
Wy = 7
intermediate
p=~hk

long-term statistical




Emerging physical picture:
3 time scales

fast

intermediate

long-term statistical




Emerging physical picture: 4 timescales

I. Wave generation

II. Pilot-wave dynamics

III. Establishment of mean pilot-wave

IV. Statistical convergence




Emerging physical picture: 4 timescales
® clear separation of scales:
1 < (%) < (% < Ty
e timescales 7, 75, 73 all unresolved in QM

¢ identify mean pilot-wave with Q: evolution for
73 < t < 74 looks like Bohmian mechanics

Note:

® if this system 1s a HQA, then we should be able
to develop an analog of Bohmian mechanics

e QM does resolve the relaxation to a statistical
equilibrium from an ensemble of ICs

® we should do likewise




ZITTERBEWEGUNG Bouncing

VIBRATION
FREQUENCY

Matter waves Capillary Faraday

Harmony of phases

STATISTICAL
WAVELENGTH

Bush (2015)



¢ a dynamical reformulation of a statistical theory

particle 1s piloted by a wave form of unspecified origins

nonlocal: particle 1s guided by the non-local quantum potential

¢ original double-solution theory distinguished between and
¢ form of pilot-wave unspecified: several options considered
® at one stage set : reduces to Bohmian mechanics

two theories conflated into “de Broglie-Bohm theory’



In their later years, both de Broglie (1987) and Bohm appealed to a
stochastic sub quantum realm, in what 1s now known as ....

The quantum vacuum is seen as a turbulent sea, roiling with waves
associated with a panoply of fields, including electromagnetic and Higgs
fields, as well as those responsible for the weak and strong forces.
Insofar as they interact with quantum particles, all such fields are
candidates for de Broglie's pilot-wave.

... seek de Broglie’s pilot-wave theory 1n the quantum vacuum fields.



Ed Nelson

e Bohm & Vigier (1954) posited a stochastic subquantum motion
complementing the Madelung flow

e Nelson (1958) showed that LSE describes Brownian motion of a mass m with
diffusivity

¢ arandom walk with characteristic velocity U and length scale

e Surdin (1972) proposed the EM zero-point field as the source of the stochasticity

¢ this approach has been forwarded by the group of Gerhard Groessing (2013 onwards),
who took inspiration from the walking droplets



— Boyer 2011, Milonni 2013

® at zero temperature, there 1s electromagnetic (" zero-point’) energy

e provides alternative explanations for Casimir forces, van der Waals forces,
the blackbody radiation spectrum

e there 1s only one spectral form that 1s homogeneous, 1sotropic, scale invariant
and Lorentz invariant

where 1S a constant

e cmpirical fact deduced from experiments on Casimir effect:
Zero point energy:
e provides a natural means of introducing into a classical theory

¢ might provide the seed field for de Broglie’s matter waves, which would thus
be of electromagnetic origin (de la Pena, Cetto & Valdes-Hernandes, 2015)



(according to SED)

e EM wave generated by resonant interaction between particle ZTB and the
vacuum fluctuations

“The de Broglie wave is the wave formed by the modulation of the Lorentz-transformed, Doppler-
shifted superposition of the whole set of random, stationary EM waves with the Compton frequency
with which the particle interacts.”

- De la Pena & Cetto (Quantum Dice, 1997)

® mass 1s simply a place holder for electromagnetic energy (Haesch & Rueda 2001)

e particle mass increases with speed due to increased interaction with vacuum field



vacuum fluctuations

+

Zitterbewegung

=

resonant interaction

=

de Broglie’s relativistic pilot-wave theory



Table 1 A comparison among the walking droplet system, de Broglie’s double-solution pilot-wave
thcory (de Broglic 1956, 1987), and its extension to stochastic clectrodynamics (SED) (Kracklaucr
1992, de la Pena & Cetto 1996, Haisch & Rueda 2000)

Walkers de Broglie SED pilot wave
Pilot wave Faraday capillary Unspecified Electromagnetic (EM)
Driving Bath vibration Internal clock Vacuum fluctuations
Spectrum Monochromatic Monochromatic Broad
Trigger Bouncing Zitterbewegung Zitterbewegung
Trigger trequency WF wr = mct b we = mc? | b
Energetics GPE <« wave et < bow mc? < EM
Resonance Droplet—wave Harmony of phases Unspecified
Dispcersion e (k) wf—, ~ ok’ /p w? = wf + 2k w = ck
Carricr A )\1-: AdB Ac
Statistical A AF AdB AdB

In the walker system, encrgy 1s cxchanged at wr between the drop’s gravitational potential encrgy (GPK) and the capillary

Faraday wave field. Ziuerbewegung denotes particle oscillatons at the Compton [requency w..

Bush, ARFM (2015)



¢ modern extensions of de Broglie’s pilot-wave theory, reminiscent of walkers

e suggests that QM paradoxes may be resolved by elucidating dynamics on the
Compton scale —

¢ 1n quantum field theory, the Compton frequency sets the time and length scales

of particle pair production from the vacuum, which poses a challenge to

experimental probing of such scales.

Found Phys (2011) 41: 843-8A2
DOI 10.1007/510701-010-9527-y

Bipartite Entanglement Induced by a Common
Background (Zero-Point) Radiation Field

A. Valdés-Hernandez - L.. de la Pena - A.M. Cetto

¢ 1dentical particles interact through a common EM pilot wave

¢ rationalize entanglement in terms of classical, wave-induced correlations



The Klein-Gordon Equation

2
mc v hk k mc
—_— = - = —— = — k‘ —
We h b c  mec k. - 2)
COMPTON

U(x,t) = e




where

9 9

e for particle to be dressed in a monochromatic KG wave field, their speeds must match

e superluminal phase velocity:




Dispersion relation: W = Wc(l + 0 2)1/2 We = m;LC
v  hk hk 1k Mo C 1
/8 = —_— = — — W kc — ,y =
c mc  ymec ke h V1= p

Relation between de Broglie and Compton wavelengths:

Ap ke 1 \1-P h

B = A, = ——
Ac ko 0o p ° myc
Special cases v=0, =0, vy=1 A — OO
v—c =1, 17— Ap — 0

Ag = A v=c/V2, B=1/V2, 7= V2



¢ the wavelength of a photon whose kinetic energy 1s the same as the rest-mass

energy of the particle:

KINETIC ENERGY REST-MASS ENERGY

¢ the length at which kinetic energies become comparable to rest-mass energy

Note:

where 1s the Compton frequency



it 1s the timescale of breakdown of the Lorentz-Dirac equation, as describes a
charge moving in its own EM wave

1t sets the scales of the classical model of the electron (Burinskii 2008)

- a charge orbits the Compton length at the Compton frequency

- failure to resolve such a dynamics renders spin an intrinsic property

sets the scale of particle creation and annihilation
in the quantum vacuum -

measurements on this scale are difficult but currently

underway 1n electron diffraction experiments



e if the particle is oscillating at the Compton frequency

exchanging rest mass energy and field energy

¢ unresolved dynamics on the Compton time scale implies unresolved

energies on the order of the particle’s rest mass energy; hence,
uncertainty as to whether or not a particle actually exists...

e HQA: resolving fast (bouncing) dynamics may change system from
unpredictable to predictable, deterministic to seemingly random



“What is it that waves in wave mechanics? We have no idea...’

— 1.S. Bell (1993)

® de Broglie suggested that the field satisfies the Klein-Gordon equation,

as describes the Higgs field (viz Einstein’s last paper, on “Ghost waves’)

e workers in Stochastic Electrodynamics (SED) suggest an EM pilot wave

(de la Pena, Cetto, Valdes-Hernandes 2015)

e several have suggested gravitational waves. matter waves arise in the
fabric of space time (Feoli & Scarpetta 1998, D’Errico 2023)



Andersen et al. (2015) considered a particle exciting a waveform that
satisfies the LSE, then moving in response to that field

Borghesi (2017) explored a pilot-wave 1n which a particle moves within a
non-dissipative elastic substrate, supporting waves satistying KG equation

Drezet et al. (2020) considered a vibrating particle self-propelling
along a frictionless spring

Drezet et al. (2024) 1s currently making a more direct attempt to complete
de Broglie’s mechanics

Dagan & Bush (2020) and Durey & Bush (2020) proposed and explored a
"Hydrodynamic quantum field theory’

Darrow & Bush (2024) developed a Lagrangian-based, relativistic
pilot-wave theory



Hydrodynamically-inspired quantum field theory

‘ Comptes Rendus
3 Lo Mécanique

l
/’ Académie des sciences

Yuval Dagan and John W. M. Bush

Hydrodynamic quantum field theory: the free particle
Volume 348, issue 6-7 (2020), p. 555-571.

?frontiers _ ORIGINAL RESEARCH
N Physics

(-3

upetates

Hydrodynamic Quantum Field
Theory: The Onset of Particle Motion
and the Form of the Pilot Wave

Matthew Durey and John W. M. Bush*

Dapartment of Mathematics, Massachusatts Institute of Technology, Cambridge, MA, United States



Hydrodynamically-inspired quantum field theory Dagan & Bush (2020)

e cxtend de Broglie’s mechanics, informed by the pilot-wave hydrodynamics

... we can envisage a more active role for the particle, something which is not
even admitted as conceivable in the conventional view. This may, for instance,
enter as a ‘source’ of the pilot-wave field through an inhomogeneous term in the

wave equation...” — Holland (1995)

* model particle as wave source, an oscillation at twice the Compton frequency
Forced Klein-Gordon equation

b — 2 buw + W2 P = € sin(2w.t) e [@=Tp) /A

‘particle’: a localized excitation
in the Higgs field

® consider the zero-particle-inertia, no-wave-damping limit
Coupling
constant

Vo
Relativistic guidance equation: Y :icp = — —¢

ox

® particle moves in response to gradients in wave amplitude



Hydrodynamic quantum field theory: Kinematics

Stationary particle Uniformly translating particle
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Hydrodynamic quantum field theory: Kinematics

Pilot wave form
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e phase speed comparable to c2/v

vic=0.7 Wave form strobed at o,
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® phase speed no longer apparent



HQFT: Kinematics

Walkers
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e strobed dynamics similar to that of walker system: particle rides steady wave form



HQFT Dynamics, The free particle: from Jitter to Zitter

e stationary state destabilizes into self-propelling state with mean momentum:

¢ changing coupling constant (¥ changes ]3 and K in concert

4

v/ie ~0.25 © .
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40
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10
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x/A,

¢ mean motion complemented by in-line oscillations with de Broglie wavelength



Hydrodynamic quantum field theory: in-line Zitter

® mean motion consistent with de Broglie’s relation
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e motion accompanied by in-line oscillations with wavelength Ap , frequency w,,,,q = ck

® suggests a dynamical interpretation of relativistic quantum dispersion relation

w? = wg 1 2 k2



HQFT Dynamics, The free particle: from Jitter to Zitter

¢ wave form accompanying a free, self-propelling state

Pilot wave form vie ~0.25 Wave form strobed at o,
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e motion accompanied by in-line oscillations with wavelength Ap , frequency Wimod = ck

¢ strobed wave form dominated by structure on the de Broglie wavelength



HQFT: Evolution of an ensemble
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e couple dynamics of HQFT to Ensemble Interpretation of quantum mechanics

e consider an ensemble of initial conditions, see that system statistics evolve according
to predictions of quantum mechanics

e start with systems with robust HQAs: Friedel oscillations, corrals, orbital PWH

® develop a trajectory-based description of quantum dynamics and statistics



The Physical Analogy

Pilot-wave hydrodynamics  HQFT
Driving Bath vibration Zitterbewegung
Driving frequency 2 Wp 2 We
Particle vibration Droplet bouncing Zitterbewegung
Particle vibration frequency wpg We = ""%“2

Waves

Pilot wavelength
Dispersion relation

Wave Energetics

Wave energy parameter
Mean velocity

Vibration length

In-line oscillation frequency

In-line oscillation length

Faraday Waves

AR

w% = gkp + %k;—

MgH +— Surface cnergy
o

Free walking speed: ug
Step size: ug/wp

upk

AF

Matter Waves
AR

w? = w? + c*k*
me? +—— hw

h

v = hk/(vymo)
Ae = h/mc
Wmod = Ck

AR




HQFT: Analytics Durey & Bush (2020)

52 3°
T 278 102 = ef (gl — % (0)
E e 09
(x )x - dx X=Xp

recast trajectory equation in more familiar, integro-differential form
t
y(x;,)x;, = —« / f(8)0xp(xp(t) — xp(s), t — s) ds
— 00

reduces to a tractable form in the nonrelativistic limit, v/c < 1:

dx, &
G —K/ j(c) xp(t) — xp(c)) ]l(t_ 5 )

ds, where Kk = aep/2c3

deduced analytically the critical coupling parameter for self-propulsion, «.= 2.98

onset of motion marked by in-line oscillations at frequency w.,., the Zittering
motion apparent in the simulations of Dagan & Bush



HQFT I

Durey & Bush (2020)

e deduced analytically the form of the 1D and 2D pilot-wave field by solving an IVP

Time evolution of pilot-wave form for v/c
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e pilot wave and particle momentum related through: p = ymuv = hk

e superposition of radially propagating waves with A, and carrier wave with Ap



HQFT I Durey & Bush (2020)

e deduced analytically the form of the 1D and 2D pilot-wave field by solving an IVP

e pilot wave and particle momentum related through: p = ymuv = hk

Dependence of waveform at 7 = 207, on v/c
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e superposition of radially propagating waves with A, and carrier wave with Ap



HQFT: Analytics Durey & Bush (2020)

¢ cxtended model to 2D, allowing comparison with walker wave field
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e superposition of radially propagating waves with Ac and carrier wave with A
e markedly different from the horseshoe-like form of the walker wave field

e for v << ¢, the 2D pilot-wave field takes the form of a plane wave with Ap



Hydrodynamic quantum field theory

Dagan & Bush (2020)
Durey & Bush (2020)

¢ pilot wave markedly different from that of walkers Az/Ac

¢ expect markedly different slit diffraction patterns +* ’

® 1D motion marked by in-line oscillations

2
y V1B
HQFT wave form 2 p

e for v <<c, pilot wave is monochromatic, with the de Broglie wavelength ~ Ap

— one anticipates a statistical signature of Ap via one of the three
paradigms elucidated in pilot-wave hydrodynamics

e for v —> c, pilot-wavelength approaches the Compton wavelength A

— one anticipates structure on the Compton scale; e.g. spin states would
correspond to the classical model of the electron (Burinskii 2008; Hestenes 2008)

e the Faraday wavelength in pilot-wave hydrodynamics plays the role of

AB in nonrelativistic QM, and A, in relativistic QM
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Hydrodynamically-inspired quantum field theory II
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Revisiting de Broglie’s Double-Solution Pilot-Wave Theory with
a Lorentz-Covariant Lagrangian Framework
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HQFT 11 David Darrow & JB

e combine particle and field Lagrangians at the level of actions

S = Stield + Sparticle + Sinteraction
1

Sfield = 5/ d'q (0" 9O — wz‘f)z)
Q

ot/
Sparticle _— - / dt mCQW_I
0

4

"
Sinteraction = / dt '7_1 (ar(b((h)) + bengauqb(qP))
0

® one 1s free to choose the manner of the wave-particle coupling via the interaction action

Coupled wave and guidance equations HQFT 11

(8, 0" +w)o =~ “(ar —b,)0° (g — gp) (8,0 +m*)p = v~ '85°(q — qp)

”

d ,, . L . , d . _ .
o ((m = a-d(gp))¥dp) = v~ (ar — b )V (gp) = (mvyde) = v~ 6V (qp)

Coupling constants a, b Single coupling constant b



HQFT I Dagan & Bush (2020) HQFT II  Darrow & Bush (2024)

(00" + w2 = —sin(2wt)5° (g — gp) (0u0" +m*)p =~ "b3°(q — gp)
Yp = —V O % (mygp) = ”y_le(/)(qp)
1. Frame-dependent 1. Lorentz invariant
2. Non-inertial dynamics 2. Inertial dynamics
3. Forced oscillations at w, 3. Time independent
4. No steady rectilinear state 3+ Emergent oscillations at w.
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HQFT II: The free particle
b=533, ulc=0.35
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e Compton-scale Yukawa wave packet adjoining particle, de Broglie wave beyond it

e particle rides wave crest with the same group velocity: p = hk

® particle only radiates at points of acceleration

e resembles inertial walkers’ of Fort & Couder (2013)

\ \ Wsource

| ~ “D



David Darrow

HQFT II: In-line oscillations of the free particle

" b=533, uy/c=0.5
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¢ 1nitial motion accompanied by Compton-scale in-line oscillations at frequency y‘la)c
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. ) David Darrow
HQFT II: The free particle near boundaries

b =533, ul/c=0.35
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interaction of pilot wave with boundaries induces Compton-scale Zitter about mean path

Zittering motion satisfies the Heisenberg Uncertainty relation: ApAx > h/2

* measurement devices will necessarily introduce such Zittering motion

® suggests possibility of Uncertainty Relations having dynamic origins, being

associated with Compton-scale dynamics



Slit diffraction with HQFT II David Darrow

Single slit diffraction pattern Trajectories Trajectories inside slit
1 ; i R o
' " S *@wﬂﬂmﬁ” ==
05+ RS e——
Double slit pattern Trajectories Trajectories inside slit
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Trajectories inside slit
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e cvidence of channeling, with channel width prescribed by 4.

® reminiscent of patterns arising in HQA of the Kapitza-Dirac effect — ponderomotive?

e reminiscent of physical picture suggested in SED: resonance excites EM waves in gap



Double-slit diffraction with HQFT 11

Quantum potential
and Bohmian trajectories

Mean-pilot-wave
potential

David Darrow



¢ the landscape before PWH: classical mechanics and quantum mechanics

Classical
Mechanics

Quantum

Mechanics




¢ cnter pilot-wave hydrodynamics

Classical
Mechanics

PWH




¢ has motivated exploration of the Generalized Pilot-wave Framework

GPWF

PWH
HQAs RIS




® has inspired the development of a number of HQFTs

HQAs PN / jonm TR

PWH S ‘




Summary

¢ there are striking similarities between pilot-wave hydrodynamics (PWH) and the
extant quantum pilot-wave theories of Bohm, de Broglie, Nelson

¢ the Generalized Pilot-wave Framework (GPWF) captures even richer dynamics
e.g. spin states; in-line jitter; erratic, diffusive motion with D ~ AU

¢ the GPWF predicts features that were only later identified in PWH; e.g. jitter,
chaotic walking, spin

¢ hydrodynamically-inspired QFT captures key features of de Broglie’s mechanics
(e.g. de Broglie’s harmony of phases, p = fik) and early models of QM (Zitter)

¢ many of the features of PWH and the GPWF are also evident in HQFT; e.g.
a quasi-monochromatic wavefield revealed through strobing, in-line Zitter,
ponderomotive effects

¢ there 1s a compelling resonance between PWH, GPWEF, HQFT and
extant realist models of QM



Bohmian mechanics

an 1ivaluable touchstone for HQA, as it involves real particles, real trajectories

a successtul attempt to restore reality to quantum mechanics

its nonlocality 1s seen by its adherents as a strength in light of Bell violations

criticized by the Copenhagen adherents as going too far

criticized by HQA adherents as not going far enough

HQA Perspective

in neglecting the Compton timescale, Bohmian mechanics discards the source
of the pilot-wave field, rendering the theory both non-relativistic and nonlocal

Bohmian mechanics describes only a mean dynamics, whose behavior 1s
prescribed by Q, which plays a role analogous to our mean pilot wave

consideration of ensembles of ICs should allow us to develop a Bohmian
description of the evolving statistics in PWH

we seek to restore locality to QM through adopting a de Broglie-like perspective:
the particle 1s the source of its own pilot-wave field



