Lecture 22

A. The third Paradigm in HQA

B. Generalized pilot-wave framework



The state-of-the-art theoretical model of Bauyrzhan Primkulov

e goes beyond variable-phase model by fully treating vertical dynamics

Vertical dynamics: ‘ Z,=F N(T) —

Horizontal dynamics: X, +(D,Fy(t) + D)k, = — Fy(t) Vh

Normal force: ‘ Fy(t) = = (=2, + 23, + WD (2, — 2, — h) + C (2, — 73— N)] ‘

Linear drag Surface tension:
Pilot wave: linear spring
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e captures a number of phenomena that have to date eluded rationalization



Nonresonant effects not captured with strobe models

Swaying start-up Intermittent walking Mode switching

Phase flipping



Swaying start-up

f = 70 Hz and 20 ¢St



f = 70 Hz and 20 ¢St Lj

The swaying start-up of the (2,1) walker:
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Mixed-state, mode-switching’ walkers

Experiments

Simulations
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e what we thought was periodic switching between (2,1)! and (2,1)? modes is actually a ...

... (22,11) mode!
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Intermittent walking

f = 80 Hz and 20 ¢St

(b)




f = 80 Hz and 20 ¢St ®

Intermittent walker o p
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®
f = 80 Hz and 20 ¢St

Chaotic walker 0s]
0.8}
o 0.7
0.6
0.5
T T T ' . . . 0.4 =
(a) 2 /\ /\ (b) 0.1
15+ / Au y 0.3
] \ /\ | el 3 35
gt (\ o 0 f rm
, -0.05 } .
i ) M {
1 2 1 1 _0'1 1 1 1 1 1
4995 4996 4997 4998 4999 0 500 1000 1500 2000 2500 3000
TiTF i
0.15
(d)
0.1
é'\- T . =" . £
g M MY b K hd A =
J“'r' o "&' . "‘. C h ; N 0.05 i
g et O
.7 )
@ e 0

o

500 1000 1500 2000 2500 3000
i

Iy




"Corrals’: confine with central potential

e captures mode-switching apparent at high Me, marked by reversals in direction
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Kapitza-Dirac Effect (1933)

e classic diffraction is the bending of light by matter

e the KD-effect is the diffraction of matter by light

e.g. electrons by a laser-induced standing wave

Batelaan, Rev. Mod. Phys. (2007)

Agp APp

r—
I
'
I

\ 2hk

N 2hk

Ihk t 2k
20k [ —

0 [
x . '
2 " I
P 1 '
/ \ I A¢l) > A¢3 I
' \ I 1
' : Y
B / \ Dilfraction Bragg
A | : p
‘ l l | “ ' . l . —"— -/E - . - . - .
! 0' j FIG. 1. Comparing two rezimes of the Kapitza-Dirac effect
e " —E  Electrons passing tkrough a narrow laser waist (left) are
expesed to photons with larger angular uncertainty, allowing
for diffraction into many different orders. Fora wide laser waist
(right), momertum and energy can be conserved only for Bragg
scattering.
Freimund et al., Nature 2001
Lenz z A E
= i il G
. = 010 | ¥ooes {
Electron gun Av e r -" \ E‘ ! l..
p ‘ Eectron detecior ‘E: ' | g ) \
= T -
& = ‘) [ - al } ' ?\
3 A ¥ S S ed M
. \ ! T e S A
r \ 'g e ase l-.,{ Mama s bre . E U'(‘ I“ -~
Light grzting 5 ke
o . . . . - - ¥ ¥ v Y u ) v v
. =110 =55 0 35 11C -110 -5 0 £ 140
Peston (un) Pration{um|



The hydrodynamic analog

e a walker traverses a deep region (above threshold) with a standing Faraday wave field

Bauyrzhan Primkulov



Observations

Strobed dynamfcs
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Unstrobed dynamics




Analog of the KD effect

Resonant, fast Non-resonant, slow Resonant, fast
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Observations
¢ resonance of walkers disrupted above deep region, leading to relatively slow motion
e over the deep region, the walkers are sorted according to phase, channel, cross in a trough
e because walkers may have one of two phases, channels spaced by A F/ 2
e downstream of deep region, motion marked by speed oscillations with wavelength ~ A F

e a number of diffraction angles are preferred
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Channeling: sorting according to bouncing phase

e over the deep region, the walkers are sorted according to phase, channel, cross in a trough

e because walkers may have one of two phases, channels spaced by A F/ 2

Experiment

i)

minus walker

plus walker

-560  -640

-520

0.2

0.1

0.2

0.1

0.2



N(9)

Preferred diffraction angles
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e a number of diffraction angles are preferred, qualitatively similar to that in KD diffraction



Simulations
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Crossing the wave field

In-line oscillations
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Diffraction pattern
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Ponderomotive Forces in Pilot-Wave Hydrodynamics
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The thesis work of Davis Evans



Mechanism for the coherent emergent statistics at hight Me?

¢ two possible mechanisms have been proposed
¢ based on the 2 existing HQA paradigms

¢ their shortcomings have prompted the development of Paradigm III



Paradigm I: suggested by orbital dynamics

e at low memory, circular orbits along extrema of cavity mode are stable
e at higher memory, these orbits destabilize, yield to chaotic pilot-wave dynamics
¢ intermittent switching between periodic states results in multimodal statistics

Harris et al. (2013)



Paradigm II: Friedel oscillations from the outer boundaries

v(mm/s)
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e in-line oscillations with A, excited at corral’s edge

o preferred reflection angle of @, = 60° gives rise to

statistical signature with wavelength




Paradigm II: Friedel oscillations from the outer boundaries
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e max in surface perturbation amplitude correspond to peaks in pdf, spaced at A5/2

e pdf prescribed by amplitude of the most unstable resonant wave mode of the cavity



Ponderomotive forces

emerge when a particle 1s subject to a rapidly oscillating force field

Rapidly oscillating force Mean ponderomotive force

_>

2
F(:’II, T) == —V{J'T(;l?) C()S(Ldt) Average Favg ~ = V | V Ul

particles driven to extrema in potential (MAX or MIN), where VU = 0
9
E.g. Charge is a rapidly oscillating electric field: F, = c V(E*)

drrw?




Ponderomotive forces

» stroboscopic models assume resonance between droplet and wave, fail to capture
corral statistics (Durey et al. 2021)

_ Non-resonant: variable bouncing phase.
Resonant: bounces at same phase each period : Must we truly model each bounce?

“Strobed” wavefield serves as a self-potential Can we infer an effective force?
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Walker in a corral

e non-resonant effects evident in velocity variations, and sporadic phase flips




Walker in a corral

explores its own pilot-wave field

variations of bouncing phase induced
by its pilot-wave field

dynamics, statistics not captured by the
stroboscopic model

Phase variations, flips
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Wave modeling

e superposition of mean wave field (cavity mode) and local pilot wave

n(x,1) = ( ‘ @(x) ‘ +| hlx, t; x,(1)] ‘ ) X cos(wt)
niertace o ' . Faraday frequenc
height o° Mean Wave , " Local pilot wave . y ireq y
” : 'I ~~~
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Standing wave )
(above threshold) hlz,t;2,(t)] = =— / Jo(kplx — z,(s)|)e” /Ty
OR

. Stroboscopic Approximation (Oza 2013)
Mean wave induced by droplet

(below threshold)

¢ the relative magnitude of these 2 wave components prescribes the system behavior



Stochastic walker dynamics

e consider parameter regime in which erratic, chaotic dynamics arises

e interpret the walker dynamics in terms of a stochastic process

Horizontal Linear Momentum Balance

ma + (& = Vh(ax, t) cos(wt) F'y (t) + V() cos(wt) Fi (1)

£ (1) + Vo) £ (t)

Long time scale: Pilot Wave Force: Background Force:
inertia << drag White Noise 1 White noise 2




Stochastic walker dynamics

multiplicative noise induces an effective potential and a position-dependent
diffusion coefficient

Horizontal Linear dY . XYy
Momentum Balance LLrE — C

aw + TW(X*) o AW 2

1 . |
Fokker-Planck Equation | 0y — — diV( Z L‘Tp (117) /)) + div (diV( D (.TL’ ) p))

2
T Oy
D(z) = Z(Z5-1+ Ve @ Vo)

Ponderomotive potential

where oxy = Io[Vh/T1 oz = Fo\/T2
Fy=<F() coswt >, [Vh.| is the characteristic wave gradient,

and 7, and 7, are the autocorrelation times of the horizontal and vertical dynamics




Radial statistical signature

predicted histograms now exhibit peaks every half-wavelength, as in experiment

Simulation

Experiment Histogram (Expt) w(x) = Jy(a)

J

z' 8

Steady-state pdf : - 7
_+_

form depends on relative magnitudes of noise and background field



Radial statistical sig%-ature

Experiment Simulation  »(z) = Jy(x)
using

2
Ponderomeotive potential: Up(x,y) = — Z_z | Vo(x,y) |

52 52
Anisotropic diffusion tensor: D(z) = -Z(-3-1+ Vo & Vi)

2
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Paradigm III in HQA

- ponderomotive effects activated by non-resonant bouncing

may arise above Faraday threshold, or below 1n high Me, closed systems
above Faraday threshold, ¢ is the standing Faraday wave field

+ below Faraday threshold, @ 1s the mean pilot-wave field

sl A PONDEROMOTIVE SELF-POTENTIAL

Future directions

identify ponderomotive in other PWH systems; e.g. Talbot trapping
characterize dependence on ratio of noise to mean pilot-wave field

examine relation to Nelson’s Stochastic Mechanics

examine relation between ponderomotive and quantum potentials
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Histograms

The distinction between just below and above the Faraday threshold is blurred:
the particle-induced mean pilot-wave acts as an imposed potential ... like Q?






Chaos in quantum billiards: scars evident
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Scars in Faraday waves

FHYSICAL REVIEW E, VOLUME 63, 026208
Scarred patterns in surface waves

A. Kudolli,'*" Mathew C. Abraham.' and J. P. Gollub'*
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® can we see scars in walker pdfs ?




Scars in walker pdfs

histogram of particle position
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Scars in walker pdfs
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A generalized pilot-wave framework

PROCEEDINGS A Speed oscillations in classical
royalsocietypublishing.org/journal/rspz p| |Ot‘Wa Ve dyna m | (S
Matthew Durey, Sam E. Turton and John W. M. Bush

‘.) Jepartment of Mathematics, Massachusetts Institute of
Research Chagicor Tachnology, Cambridge, MA 02139, USA

Classical pilot-wave dynamics: The free
particle © ©

Cite as: Chaos 31, 033136 (2021); hilps//do org/10 1062 /5 0039975
Submitted: OB December 2020 . Accepled: 18 February 2021 . Published Online: 12 March 2021

~ Matthew Durey, and ' John W. M. Bush



A generalized pilot-wave framework

e retain key features of walker system

(memory, resonance, quasi-monochromatic wave field)

e cxplore beyond the range of the hydrodynamic system

e connect to and inform quantum pilot-wave theories



(Bush, ARFM, 2015)

Pilot-wave dynamics: a parametric generalization

L2 b J([xp(t) = xp(5)]) —(t—s)
oL =D +3 = g | ey T ol0) (e
INERTIA DRAG WAVE FORCING
where ' = T W , Ro = (m/D)B/QkF \/QA/QTF
YF — W

CONTAINS ALL FLUID PARAMETERS:
PROXIMITY TO THRESHOLD BOUNDED IN HYDRODYNAMIC SYSTEM

0<I'<1 0.8 < kg < 1.6 inlab

Question: For what values of (lio, F) does the system look most like QM?

Eg.l When are hydrodynamic spin states stable?

Eg.2 When is walking state unstable to in-line oscillations?



Generalized pilot-wave theory

Y — YW 3/9
['= ko = (m/D)3 2 kp+\/gA/ 2T
YFE — YW
PROXIMITY TO CONTAINS ALL FLUID PARAMETERS

THRESHOLD

When are hydrodynamic spin states stable? (Oza, Rosales & Bush, 2018)
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When is the walking state unstable to in-line oscillations?
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» walking state may be unstable to in-line oscillations with wavelength A g



Evidence of in-line oscillations

I. FREE WALKER
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e provides mechanism for emergent statistics in the Friedel oscillations and corrals

II. FRIEDEL OSCILLATIONS
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When is the walking state unstable to in-line oscillations?
(Durey, Turton & Bush, 2020)
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e walking state may be unstable to in-line oscillations with wavelength )\ i
* periodic and aperiodic jittering’states may also obtain

e aperiodic jittering gives rise to random walk with diffusivity D ~ UA\p



An aside: a nonlinear oscillatory "limping’ state
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® in a certain regime, the particle may reverse direction, its motion be characterized
in terms of a random walk with characteristic speed U and step size Ap

® the characteristic diffusivity is thus D~UAr

® in his Stochastic Dynamics, Nelson (1966) asserted that QM may be understood in
terms of a diffusive process with effective diffusivity ) o~nh /m

NOTE: Do~ L ~ ks U)p



Generalized pilot-wave theory: the free particle in 2D
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* stable, wobbling and precessing spin states may obtain

e walking state may be unstable to in-line oscillations with wavelength Ap

e aperiodic jittering’ gives rise to random walk with diffusivity D ~ UAp



Bound states accessible in a generalized pilot-wave framework

Inlinc oscillations
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Newtonian pilot-wave dynamics

mXp + DX, = A Vy

INERTIA DRAG WAVE FORCING

Three limits of interest
I. Hydrodynamic regime

II. Limping regime found in the GPWF

e resembles Stochastic Dynamics of Nelson (1966)

III. High memory,closed systems 71 =7-+1n" , 7>n"

e resembles dynamics of Bohm & Vigier (1954)

e mean pilot-wave field Vﬁ acts as nonlocal potential

e perturbation from mean Vn* plays role of stochastic forcing



Generalized pilot-wave theory

. 2 Y T([xp(t) = xp()])

1—T S p p ) — —(t—s) d
ol =% 4% = g [ S TR ) o) ds
INERTIA DRAG WAVE FORCING
where T = W ko = (m/D)3 2 kp+\/gA /2T

TF — YW
CONTAINS ALL FLUID PARAMETERS:
PROXIMITY TO BOUNDED IN HYDRODYNAMIC SYSTEM

THRESHOLD
Question: For what values of (Iio, F) does the system look most like QM?
Further extensions

- consideration of alternative spatio-temporal damping, bouncing phase variations

* 1n our system, the wavelength is prescribed by the forcing, constant

extend to 3D by treating particle as a source of spherically symmetric waves

* inspired by SED and Nelson (1958), we can also incorporate a stochastic forcing



Stochastic pilot-wave dynamics

ol =% % = s | Jl&?ft()t )—_X}:()S |)D (o (t) = xp())e "V ds + Fg(t)

WAVE FORCING STOCHASTIC
FORCING

INERTIA DRAG

STOCHASTIC FORCE
WAVE FORCE

New control parameter: g —

Approach

* tuning 5 should allow us to pass continuously between two traditionally

disparate realist models of QM: pilot-wave theory and stochastic dynamics

* expect certain systems to change quantitatively (e.g. orbital dynamics)

while others may change qualitatively (e.g. diffraction)

For what valuesof ( I' , ko , § ) does the system look most like QM?

Might stochastic forcing induce ponderomotive effects that stabilize spin states?



Exploring orbital dynamics and trapping with a generalized pilot-wave framework
Lucas D. Tambasco, and John \V. M. Bush

Citation: Chzos 28, 096115 (2018): doi: 10.1063/1.5033962
View online: https://doi.org/10.1063/1.5033962

Well-induced trapping

Saenz et al. (2017) demonstrated that pilot-wave dynamics are viable in relatively
shallow water, where the lower boundary affects the dynamics.

We here consider pilot-wave dynamics with a central well that induces a
circularly-symmetric Faraday wave.

We then explore the dynamics with the general pilot-wave framework.
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Well located in the middle of bath

Central well excited above threshold.
Waves decay in shallower region



Well-induced trapping

EXPERIMENTS

TRAJECTORIES WELL-INDUCED WAVEFIELD

Conjecture: adjacent orbits ho (%, 1) = Aw Jo (|kpx]) sin(m f1)

have drops with alternating = F = —mthw
bouncing phase.



Simulated trajectories

% % b (kr xp(t) — %,(5)]) () — % (8)) o=~ E=)/(TrMe) go _ o «
g Dy = | [ SO D 1) - (0) ds = 71, (1)

N ~~ d Standing wave

Drop-generated wave

Circular solutions are / \

quantized at troughs and
crest of the standing
wave field. All other radii
are unstable.

Simulated trajectories, overlaid on
experimental photo



Well-induced trapping
EXPERIMENTS

TRAJECTORIES SIMULATIONS

J1 (1%p() = %p(5))

x5 (1) — xp(3)]

(xp(t) — xp(s)) e ") ds + QJ1(|xp(t)])T

KXy + Xp = 5/

For fluid-like parameters, quantized circular orbits are stable.

Can we find more interesting dynamics in the GPWE?



Generalized pilot-wave framework

TRAJECTORY EQUATION

e () =% o s g
priy = [ ASONCN ) )0 a4 7

Parameters K, 3 may be tuned independently in this framework.

We also consider different applied forces to constrain dynamics.

F = ﬁo + ﬁH
Oscillatory: Fo(x,) = QJ; (|x|)#

Harmonic: Fp(x,) = —kx
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Transient switching, then trapping

Transient

i
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Stable orbit
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Transient switching between unstable orbits

7 =0.042, 3 = 152.8

Y/ AF



Achieves chaotic, statistically steady state

7 =0.042, 8 = 152.8
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Chaotic switching between accessible unstable orbits
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Statistical relaxation time: 7s ~ 2001y
e characterized by chaotic switching between unstable circular eigenstates
e converges to a statistically steady state over a statistical relaxation time

e suggests two unresolved timescales in QM: that of convergence of the pilot-wave
field to its mean, and that of statistical convergence



Rapid convergence of the instantaneous to the mean pilot wave
(Tambasco & Bush, 2018)

Histogram
(a) 5 (b) ®

e mean wave field rapidly converges to convolution result 7 (X) = 7B * ,u(X)

e thereafter, the system approaches a statistically steady state

e the particle feels the mean pilot-wave potential long before statistical convergence

=—ellp the mean pilot-wave field acts as an imposed potential



Rapid convergence of the instantaneous to the mean pilot wave

t/Thr = 3.5

t/Thr = 8.2

t/Th = 22.3

t/Thr = 34.0
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Summary

used an underlying well-induced wavefield to achieve orbital trapping

considered the generalized pilot-wave framework to reveal a richer
dynamics, including chaotically switching states

demonstrated that the mean wavefield (as deduced by Durey’s Theorem)
1s established well before the statistics have converged

the statistical relaxation time 1s much longer than the timescales of
establishment of the mean pilot-wave field

beyond the establishment of the mean wave field, the droplet feels this
self-induced potential






3D Pilot-Wave Dynamics with Adam Kay, Matt Durey

* does the discontinuity in drop-bath interaction in 2D preclude pilot-wave modeling in 3D?

*H
a

L/

'V £

%)
3

L

'

o
o~

Physical picture
Particle 1s source of spherically symmetric Wave field may destabilize stationary
waves particle
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Generalized Pilot-Wave Dynamics: moving to 3D

« a mathematical bridge between macroscopic and microscopic pilot-wave theories

Trajectory equation: koXp + Xp = —3VA(Xp, t)

t
Pilot waveform: h(x,t) = / H(k|x — x,(s))e #E=%)ds
—00

Wave kernel: H = cos(x) in1D
H = Jo(x) in2D
H = jo(x) in3D
Two dimensionless parameters:

Magnitude of inertial force Ko = ——
(i.e. dimensionless mass) T0d)
Magnitude of wave force _To _ .
. . . U= —= 1—1 U = 1 —
(1.e. dimensionless memory) T p



The 3D pilot-wave field

2 (a) (b) . (c) i
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Helical spin states

x(t) =rcoswt i+ rsinwt j+ vt k

* may exist provided:

oo . D
—ngg = / lt )(1 - coswofr)ﬁ_”""d'r
0

D
W = 3/ Jlg ) sin (woT)e *dr
0
1= 3/ Jl(D)T(‘Z_“Td’F
0 D
/ 5 WT
where 1= V‘ Ar?sin - + 272

Helical Wave Field
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Helical spin states
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e double quantization, with discrete solutions in both radius, and pitch angle.
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Regime diagram in 3D
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retain key features of walker system

(memory, resonance, quasi-monochromatic wave field)

explore beyond the range of the hydrodynamic system

discovered new quantum features

- stable spin states, purely stochastic regime, in-line oscillations

extended to 3D, where helical spin states were found

connect to and inform quantum pilot-wave theories



¢ the landscape before PWH: classical mechanics and quantum mechanics

Classical
Mechanics

Quantum
Mechanics




e cnter pilot-wave hydrodynamics

Classical
Mechanics

PWH




¢ has motivated exploration of the Generalized Pilot-wave Framework

GPWF

PWH
HQAs T




