Lecture 22

A. The third Paradigm in HQA

B. Generalized pilot-wave framework

The state-of-the-art theoretical model of Bauyrzhan Primkulov

• goes beyond variable-phase model by fully treating vertical dynamics

Vertical dynamics:

$$\ddot{z}_p = F_N(\tau) - Bo$$

$$\ddot{\mathbf{x}}_{p} + (\mathcal{D}_{h}F_{N}(\tau) + \mathcal{D}_{a})\dot{\mathbf{x}}_{p} = -F_{N}(\tau)\nabla h$$

Normal force:

Pilot wave

$$F_N(\tau) = -\mathcal{H}(-z_p + z_b + h)[\mathcal{D}_v(\dot{z}_p - \dot{z}_b - \dot{h}) + \mathcal{C}_v(z_p - z_b - h)]$$

Linear drag

Surface tension: linear spring

$$f(\mathbf{x}, \tau) = \cos(\Omega \tau/2) \sum_{i=1}^{n} A_{i} e^{-\frac{\tau - \tau_{i}}{\tau_{F}Me}} (\tau - \tau_{i})^{-1/2} J_{0}(k_{F}r) [1 + (\xi r K_{1}(\xi r) - 1)e^{-1/2}] ds$$
where
$$A_{i} = \frac{4}{3} \sqrt{2\pi Oh_{e}} \frac{k_{F}^{3}}{3k_{F}^{2} + Bo} \int_{\tau_{e}} F_{N}(s) \sin(\Omega s/2) ds$$
Impact time, position:
$$\tau_{i} = \frac{\int_{\tau_{e}} F_{N}(s) s ds}{\int_{\tau_{e}} F_{N}(s) s ds}, \quad \mathbf{x}_{i} = \frac{\int_{\tau_{e}} F_{N}(s) \mathbf{x}_{p}(s) ds}{\int_{\tau_{e}} F_{N}(s) \mathbf{x}_{p}(s) ds}$$

npact time, position:
$$\tau_i = \frac{\sigma_c}{\int_{\tau_c} F_N(s) ds}, \ \mathbf{x}_i = \frac{\sigma_c}{\int_{\tau_c} F_N(s) ds}$$

• captures a number of phenomena that have to date eluded rationalization

Nonresonant effects not captured with strobe models

Phase flipping

Swaying start-up

 $f\,=\,70\;{\rm Hz}$ and $20\;{\rm cSt}$

wave height

0

-0.1

A

2

1.5

1

0

-0.5

-1

595

∾ 0.5

(a)

А

596

Mixed-state, `mode-switching' walkers

Experiments

Simulations

• what we thought was periodic switching between $(2,1)^1$ and $(2,1)^2$ modes is actually a ... (22,11) mode!

f = 70 Hz and 20 cSt

2 (a) 1.5 coupled 1 24 0.5 0 -0.5 -1 L 995 996 997 998 999 τ / τ_P 2 (c) 1.5 uncoupled 1 0.5 0 -0.5 В -1 997 995 996 998 999 τ / τ_P

Mixed-state, `mode-switching' walkers

Intermittent walking

 $f\,=\,80\;{\rm Hz}$ and $20\;{\rm cSt}$

Experime

`Corrals': confine with central potential

• captures mode-switching apparent at high Me, marked by reversals in direction

A hydrodynamic analog of the Kapitza-Dirac effect

B.K. Primkulov, V. Frumkin, D.J. Evans, P.J. Sáenz, J.W.M. Bush

Kapitza-Dirac Effect (1933)

- classic diffraction is the bending of light by matter
- the KD-effect is the diffraction of matter by light *e.g.* electrons by a laser-induced standing wave

Batelaan, Rev. Mod. Phys. (2007)

FIG. 1. Comparing two regimes of the Kapitza-Dirac effect. Electrons passing through a narrow laser waist (left) are exposed to photons with larger angular uncertainty, allowing for diffraction into many different orders. For a wide laser waist (right), momentum and energy can be conserved only for Bragg scattering.

The hydrodynamic analog

• a walker traverses a deep region (above threshold) with a standing Faraday wave field

Bauyrzhan Primkulov

Observations

Analog of the KD effect

Resonant, fast

Non-resonant, slow

Resonant, fast

0.2

-0.2

Observations

- resonance of walkers disrupted above deep region, leading to relatively slow motion
- over the deep region, the walkers are sorted according to phase, channel, cross in a trough
- because walkers may have one of two phases, channels spaced by $\lambda_F/2$
- downstream of deep region, motion marked by speed oscillations with wavelength $\sim \lambda_F$
- a number of diffraction angles are preferred

Channeling: sorting according to bouncing phase

- over the deep region, the walkers are sorted according to phase, channel, cross in a trough
- because walkers may have one of two phases, channels spaced by $\lambda_F/2$

Preferred diffraction angles

• a number of diffraction angles are preferred, qualitatively similar to that in KD diffraction

Simulations

$$\begin{split} \ddot{z}_p &= F_N(\tau) - Bo \qquad \qquad \ddot{\mathbf{x}}_p + (\mathcal{D}_h F_N(\tau) + \mathcal{D}_a) \dot{\mathbf{x}}_p = -F_N(\tau) \nabla(h+H) \\ F_N(\tau) &= -\mathcal{H}(-z_p + z_b + h) [\mathcal{D}_v(\dot{z}_p - \dot{z}_b - \dot{h}) + \mathcal{C}_v(z_p - z_b - h)] \end{split}$$

Crossing the wave field

Ponderomotive Forces in Pilot-Wave Hydrodynamics

The thesis work of Davis Evans

Mechanism for the coherent emergent statistics at hight Me?

- two possible mechanisms have been proposed
- based on the 2 existing HQA paradigms
- their shortcomings have prompted the development of Paradigm III

Paradigm I: suggested by orbital dynamics

- at low memory, circular orbits along extrema of cavity mode are stable
- at higher memory, these orbits destabilize, yield to chaotic pilot-wave dynamics
- intermittent switching between periodic states results in multimodal statistics

Harris et al. (2013)

Paradigm II: Friedel oscillations from the outer boundaries

- in-line oscillations with λ_F excited at corral's edge
- preferred reflection angle of $\theta_R = 60^0$ gives rise to statistical signature with wavelength

 $\lambda_F \cos \pi/3 = \lambda_F/2$

Paradigm II: Friedel oscillations from the outer boundaries

- max in surface perturbation amplitude correspond to peaks in pdf, spaced at $\lambda_F/2$
- pdf prescribed by amplitude of the most unstable resonant wave mode of the cavity

Ponderomotive forces

• emerge when a particle is subject to a rapidly oscillating force field

Rapidly oscillating force

 $F(x,t) = -\nabla U(x)\cos(\omega t)$

Mean ponderomotive force

$$F_{avg} \sim -\nabla |\nabla U|^2$$

• particles driven to extrema in potential (MAX or MIN), where $\nabla U = 0$

Average

E.g. Charge is a rapidly oscillating electric field:

$${f F}_{
m p}=-rac{e^2}{4m\omega^2}
abla(E^2)$$

Ponderomotive forces

• stroboscopic models assume resonance between droplet and wave, fail to capture corral statistics (Durey et al. 2021)

 $\sim 1 \sim$

Resonant: bounces at same phase each period : "Strobed" wavefield serves as a self-potential

Non-resonant: variable bouncing phase. Must we truly model each bounce? Can we infer an effective force?

Walker in a corral

• non-resonant effects evident in velocity variations, and sporadic phase flips

Walker in a corral

- explores its own pilot-wave field
- variations of bouncing phase induced by its pilot-wave field
- dynamics, statistics *not* captured by the stroboscopic model

Phase variations, flips

Wave modeling

• superposition of mean wave field (cavity mode) and local pilot wave

• the relative magnitude of these 2 wave components prescribes the system behavior

Stochastic walker dynamics

- consider parameter regime in which erratic, chaotic dynamics arises
- interpret the walker dynamics in terms of a stochastic process

Horizontal Linear Momentum Balance

$$m\ddot{x} + \zeta \dot{x} = \nabla h(x,t)\cos(\omega t)F_Z(t) + \nabla \varphi(x)\cos(\omega t)F_Z(t)$$

$$\zeta \dot{x} = \xi^{(1)}(t) + \nabla \varphi(x) - \xi^{(2)}(t)$$

Long time scale: inertia << drag **Pilot Wave Force:** White Noise 1 **Background Force:** White noise 2

Stochastic walker dynamics

 multiplicative noise induces an effective potential and a position-dependent diffusion coefficient

Horizontal Linear Momentum Balance

$$dX_t = \frac{\sigma_{XY}}{\zeta} dW_t^{(1)} + \frac{\sigma_Z}{\zeta} \nabla \varphi(X_t) \circ dW_t^{(2)}$$

Fokker-Planck Equation

$$\rho_t = -\text{div}(\frac{1}{\zeta}U_P(x)\rho) + \text{div}(\text{div}(\mathsf{D}(x)\rho))$$

$$U_P(x) = \frac{\sigma_Z^2}{4\zeta} |\nabla \varphi(x)|^2$$

Ponderomotive potential

$$\mathsf{D}(x) = \frac{\sigma_Z^2}{\zeta^2} (\frac{\sigma_{XY}^2}{\sigma_Z^2} \mathbf{1} + \nabla \varphi \otimes \nabla \varphi)$$

Position-dependent diffusion tensor

where $\sigma_{XY} = F_0 [\nabla h_c] \sqrt{\tau_1}$

$$\sigma_Z = F_0 \sqrt{\tau_2}$$

 $F_0 = \langle F(t) \cos \omega t \rangle$, $[\nabla h_c]$ is the characteristic wave gradient,

and τ_1 and τ_2 are the autocorrelation times of the horizontal and vertical dynamics

Radial statistical signature

• predicted histograms now exhibit peaks every half-wavelength, as in experiment

Simulation

Steady-state *pdf* :

$$\rho_{SS}(x) = \frac{Z}{\sqrt{\frac{\sigma_{XY}^2}{\sigma_Z^2} + |\nabla \varphi|^2}}$$

• form depends on relative magnitudes of noise and background field
Radial statistical signature

Ponderomotive potential:

 $U_P(x, y) = -\frac{\sigma_Z^2}{4\zeta} |\nabla \varphi(x, y)|^2$ $\mathsf{D}(x) = \frac{\sigma_Z^2}{\zeta^2} (\frac{\sigma_{XY}^2}{\sigma_Z^2} \mathbf{1} + \nabla \varphi \otimes \nabla \varphi)$

Anisotropic diffusion tensor:

Paradigm III in HQA

- operation ponderomotive effects activated by non-resonant bouncing
- may arise above Faraday threshold, or below in high Me, closed systems
- above Faraday threshold, φ is the standing Faraday wave field
- below Faraday threshold, φ is the mean pilot-wave field

A PONDEROMOTIVE SELF-POTENTIAL

Future directions

- identify ponderomotive in other PWH systems; *e.g.* Talbot trapping
- characterize dependence on ratio of noise to mean pilot-wave field
- examine relation to Nelson's Stochastic Mechanics
- examine relation between ponderomotive and quantum potentials

	Bohmian mechanics	Walkers
WAVELENGTH	λ_B	λ_F
GUIDANCE	$m \ddot{\mathbf{x}}_p = -\nabla Q - \nabla V + \nabla \Phi_S$	$m \ddot{\mathbf{x}}_{\mathbf{p}} = -D \dot{\mathbf{x}}_{\mathbf{p}} + \nabla \eta(\mathbf{x}, t) - \nabla V$
WAVE POTENTIAL	${f Q}=-rac{\hbar^2}{m^2}rac{1}{\sqrt{ ho}} abla^2\sqrt{ ho}$ quantum potential	$ar{\eta}(\mathbf{x}) \ = \ \eta_B st \mu(\mathbf{x})$ Mean wave field
STOCHASTIC FORCING	$ abla \Phi_S$ ARBITRARY, ad hoc	$- abla \eta^*(\mathbf{x},t)$ perturbation wave field
WAVE ORIGIN	NONE	PARTICLE VIBRATION

HQA Corrals $\gamma_F = 3.75g$

Histograms

The distinction between just below and above the Faraday threshold is blurred: *the particle-induced mean pilot-wave acts as an imposed potential* ... like Q?

Chaos in quantum billiards: scars evident

Scars in Faraday waves

PHYSICAL REVIEW E, VOLUME 63, 026208

Scarred patterns in surface waves

A. Kudrolli,^{1,2,*} Mathew C. Abraham,¹ and J. P. Gollub^{1,3,†}

• can we see scars in walker *pdf*s?

Scars in walker *pdf*s

Scars in walker *pdf*s

A generalized pilot-wave framework

PROCEEDINGS A

royalsocietypublishing.org/journal/rspa

Research

Speed oscillations in classical pilot-wave dynamics

Matthew Durey, Sam E. Turton and John W. M. Bush

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Chaos

Classical pilot-wave dynamics: The free particle 🕒 💷

Cite as: Chaos 31, 033136 (2021); https://doi.org/10.1063/5.0039975 Submitted: 08 December 2020 . Accepted: 18 February 2021 . Published Online: 12 March 2021

🕑 Matthew Durey, and 💷 John W. M. Bush

A generalized pilot-wave framework

• retain key features of walker system

(memory, resonance, quasi-monochromatic wave field)

• explore beyond the range of the hydrodynamic system

• connect to and inform quantum pilot-wave theories

(Bush, ARFM, 2015)

Pilot-wave dynamics: a parametric generalization

Question: For what values of (κ_0, Γ) does the system look most like QM?

- Eg.1 When are hydrodynamic spin states stable?
- Eg.2 When is walking state unstable to in-line oscillations?

Generalized pilot-wave theory

$$\Gamma = \frac{\gamma - \gamma_W}{\gamma_F - \gamma_W} \qquad \qquad \kappa_0 = (m/D)^{3/2} k_F \sqrt{gA/2T_F}$$

PROXIMITY TO THRESHOLD **CONTAINS ALL FLUID PARAMETERS**

When are hydrodynamic spin states stable? (*Oza*, *Rosales & Bush*, 2018)

When is the walking state unstable to in-line oscillations?

• walking state may be unstable to in-line oscillations with wavelength λ_F

Evidence of in-line oscillations

• provides mechanism for emergent statistics in the Friedel oscillations and corrals

When is the walking state unstable to in-line oscillations?

- walking state may be unstable to in-line oscillations with wavelength λ_F
- periodic and aperiodic *`jittering'* states may also obtain
- aperiodic jittering gives rise to random walk with diffusivity $D \sim U \lambda_F$

An aside: a nonlinear oscillatory `limping' state

- in a certain regime, the particle may reverse direction, its motion be characterized in terms of a random walk with characteristic speed U and step size λ_F
- the characteristic diffusivity is thus

$$\mathbf{D} \sim \mathbf{U} \lambda_F$$

• in his Stochastic Dynamics, Nelson (1966) asserted that QM may be understood in terms of a diffusive process with effective diffusivity $D_Q \sim \hbar/m$

NOTE:
$$D_Q \sim \frac{\hbar}{m} \sim \frac{\hbar k_B}{m k_B} \sim U \lambda_B$$

Generalized pilot-wave theory: the free particle in 2D

- stable, wobbling and precessing spin states may obtain
- walking state may be unstable to in-line oscillations with wavelength λ_F
- aperiodic `*jittering*' gives rise to random walk with diffusivity $D \sim U \lambda_F$

Bound states accessible in a generalized pilot-wave framework

Newtonian pilot-wave dynamics

$$m \ddot{\mathbf{x}}_{\mathbf{p}} + D \dot{\mathbf{x}}_{\mathbf{p}} = A \nabla \eta$$

INERTIA DRAG

WAVE FORCING

Three limits of interest

I. Hydrodynamic regime

II. Limping regime found in the GPWF

• resembles Stochastic Dynamics of Nelson (1966)

III. High memory, closed systems $\eta = \bar{\eta} + \eta^*$, $\bar{\eta} \gg \eta^*$

- resembles dynamics of Bohm & Vigier (1954)
 - mean pilot-wave field $\nabla \bar{\eta}$ acts as nonlocal potential
 - perturbation from mean $\nabla\eta^*$ plays role of stochastic forcing

Generalized pilot-wave theory

$$\kappa_0 (1 - \Gamma) \ddot{\mathbf{x}}_p + \dot{\mathbf{x}}_p = \frac{2}{(1 - \Gamma)^2} \int_{-\infty}^t \frac{J_1(|\mathbf{x}_p(t) - \mathbf{x}_p(s)|)}{|\mathbf{x}_p(t) - \mathbf{x}_p(s)|} (\mathbf{x}_p(t) - \mathbf{x}_p(s)) e^{-(t-s)} ds$$

INERTIA DRAG

WAVE FORCING

where $\Gamma = \frac{\gamma - \gamma_W}{\gamma_F - \gamma_W}$

,
$$\kappa_0 = (m/D)^{3/2} k_F \sqrt{gA/2T_F}$$

PROXIMITY TO THRESHOLD CONTAINS ALL FLUID PARAMETERS: BOUNDED IN HYDRODYNAMIC SYSTEM

Question: For what values of (κ_0, Γ) does the system look most like QM?

Further extensions

- consideration of alternative spatio-temporal damping, bouncing phase variations
- in our system, the wavelength is prescribed by the forcing, constant
- extend to 3D by treating particle as a source of spherically symmetric waves
- inspired by SED and Nelson (1958), we can also incorporate a stochastic forcing

Stochastic pilot-wave dynamics

$$\kappa_0(1-\Gamma)\ddot{\mathbf{x}}_p + \dot{\mathbf{x}}_p = \frac{2}{(1-\Gamma)^2} \int_{-\infty}^t \frac{J_1(|\mathbf{x}_p(t) - \mathbf{x}_p(s)|)}{|\mathbf{x}_p(t) - \mathbf{x}_p(s)|} (\mathbf{x}_p(t) - \mathbf{x}_p(s))e^{-(t-s)} \, ds + \mathbf{F_s}(\mathbf{t})$$
INERTIA DRAG
WAVE FORCING
STOCHASTIC FORCING
CTOCULA CTUCE FORCE

New control parameter: $\beta = \frac{\text{STOCHASTIC FORCE}}{\text{WAVE FORCE}}$

Approach

- tuning β should allow us to pass continuously between two traditionally disparate realist models of QM: pilot-wave theory and stochastic dynamics
- expect certain systems to change quantitatively (e.g. orbital dynamics) while others may change qualitatively (e.g. diffraction)

For what values of (Γ , κ_0 , β) does the system look most like QM?

Might stochastic forcing induce ponderomotive effects that stabilize spin states?

Exploring orbital dynamics and trapping with a generalized pilot-wave framework

Lucas D. Tambasco, and John W. M. Bush

Citation: Chaos 28, 096115 (2018); doi: 10.1063/1.5033962 View online: https://doi.org/10.1063/1.5033962

Well-induced trapping

Sáenz *et al.* (2017) demonstrated that *pilot-wave dynamics are viable* in relatively *shallow water*, where the lower boundary affects the dynamics.

We here consider pilot-wave dynamics with a *central well* that induces a circularly-symmetric Faraday wave.

We then explore the dynamics with the general pilot-wave framework.

Well-induced trapping

EXPERIMENTS

Well located in the middle of bath

Central well excited above threshold. Waves decay in shallower region

Well-induced trapping

EXPERIMENTS

Conjecture: adjacent orbits have drops with alternating bouncing phase.

WELL-INDUCED WAVEFIELD

 $h_w(\mathbf{x}, t) = A_w J_0 \left(|k_F \mathbf{x}| \right) \sin(\pi f t)$ $\Rightarrow \mathcal{F} = -mg \nabla h_w$

Simulated trajectories

$$m\ddot{\mathbf{x}}_{p} + D\dot{\mathbf{x}}_{p} = A\left(\underbrace{\int_{-\infty}^{t} \frac{J_{1}\left(k_{F} \left|\mathbf{x}_{p}(t) - \mathbf{x}_{p}(s)\right|\right)}{\left|\mathbf{x}_{p}(t) - \mathbf{x}_{p}(s)\right|}\left(\mathbf{x}_{p}(t) - \mathbf{x}_{p}(s)\right)e^{-(t-s)/(T_{F}M_{e})}\,ds - \underbrace{\sigma J_{1}(k_{F}\mathbf{x}_{p}(t))}_{\text{Standing wave}}\right)$$

Circular solutions are quantized at troughs and crest of the standing wave field. All other radii are unstable.

Simulated trajectories, overlaid on experimental photo

Well-induced trapping

EXPERIMENTS

TRAJECTORIES

SIMULATIONS

$$\kappa \ddot{\mathbf{x}}_{p} + \dot{\mathbf{x}}_{p} = \beta \int_{-\infty}^{t} \frac{J_{1}\left(|\mathbf{x}_{p}(t) - \mathbf{x}_{p}(s)|\right)}{|\mathbf{x}_{p}(t) - \mathbf{x}_{p}(s)|} \left(\mathbf{x}_{p}(t) - \mathbf{x}_{p}(s)\right) e^{-(t-s)} \,\mathrm{d}s + QJ_{1}(|\mathbf{x}_{p}(t)|)\hat{\mathbf{r}}$$

For fluid-like parameters, *quantized circular orbits are stable*. Can we find more interesting dynamics in the GPWF?

Generalized pilot-wave framework

TRAJECTORY EQUATION

$$\kappa \ddot{\mathbf{x}}_p + \dot{\mathbf{x}}_p = \beta \int_{-\infty}^t \frac{J_1\left(|\mathbf{x}_p(t) - \mathbf{x}_p(s)|\right)}{|\mathbf{x}_p(t) - \mathbf{x}_p(s)|} \left(\mathbf{x}_p(t) - \mathbf{x}_p(s)\right) e^{-(t-s)} \,\mathrm{d}s + \tilde{\mathcal{F}}$$

Parameters κ, β may be tuned independently in this framework.

We also consider different applied forces to constrain dynamics.

$$\tilde{\mathcal{F}} = \tilde{\mathcal{F}}_O + \tilde{\mathcal{F}}_H$$

Oscillatory: $\tilde{\mathcal{F}}_O(\mathbf{x}_p) = QJ_1(|\mathbf{x}|)\hat{\mathbf{r}}$
Harmonic: $\tilde{\mathcal{F}}_H(\mathbf{x}_p) = -k\mathbf{x}$

Transient switching to stable orbit

 $\kappa = 0.14, \beta = 252.8$

$$\kappa \ddot{\mathbf{x}}_p + \dot{\mathbf{x}}_p = \beta \int_{-\infty}^t \frac{J_1\left(|\mathbf{x}_p(t) - \mathbf{x}_p(s)|\right)}{|\mathbf{x}_p(t) - \mathbf{x}_p(s)|} \left(\mathbf{x}_p(t) - \mathbf{x}_p(s)\right) e^{-(t-s)} \,\mathrm{d}s + \tilde{\mathcal{F}}$$

Transient switching, then trapping

Transient switching between unstable orbits

 $\tilde{\kappa} = 0.042, \beta = 152.8$

 x/λ_F

Achieves chaotic, statistically steady state

Chaotic switching between accessible unstable orbits

Statistical relaxation time: $\tau_S \sim 200T_M$

- characterized by chaotic switching between unstable circular eigenstates
- converges to a statistically steady state over a statistical relaxation time
- suggests *two unresolved timescales in QM*: that of convergence of the pilot-wave field to its mean, and that of statistical convergence

Rapid convergence of the instantaneous to the mean pilot wave (*Tambasco & Bush, 2018*)

- mean wave field rapidly converges to convolution result $\ ar{\eta}(\mathbf{x}) \ = \ \eta_B * \mu(\mathbf{x})$
- thereafter, the system approaches a statistically steady state
- the particle feels the mean pilot-wave potential long before statistical convergence

the mean pilot-wave field acts as an imposed potential
Rapid convergence of the instantaneous to the mean pilot wave

 $t/T_M = 3.5$

 $t/T_M = 8.2$

 $t/T_M = 22.3$

 $t/T_M = 34.0$

Summary

- used an underlying well-induced wavefield to achieve orbital trapping
- considered the generalized pilot-wave framework to reveal a richer dynamics, including *chaotically switching states*
- demonstrated that *the mean wavefield* (as deduced by Durey's Theorem) is established well before the statistics have converged
- the *statistical relaxation time* is much longer than the timescales of establishment of the mean pilot-wave field
- beyond the establishment of the mean wave field, the droplet feels this *self-induced potential*

3D Pilot-Wave Dynamics

with Adam Kay, Matt Durey

• does the discontinuity in drop-bath interaction in 2D preclude pilot-wave modeling in 3D?

Physical picture

Particle is source of spherically symmetric waves

Wave field may destabilize stationary particle

Generalized Pilot-Wave Dynamics: moving to 3D

• a mathematical bridge between macroscopic and microscopic pilot-wave theories

Trajectory equation:
$$\kappa_0 \ddot{\mathbf{x}}_p + \dot{\mathbf{x}}_p = -3\nabla h(\mathbf{x}_p, t)$$

Pilot waveform:
$$h(\mathbf{x},t) = \int_{-\infty}^{t} \mathcal{H}(k|\mathbf{x} - \mathbf{x}_p(s)|)e^{-\mu(t-s)}ds$$

Wave kernel:	$\mathcal{H} = \cos(x)$	in 1D
	$\mathcal{H}=J_0(x)$	in 2D
	$\mathcal{H} = j_0(x)$	in 3D

Two dimensionless parameters:

Magnitude of inertial force (i.e. dimensionless mass)

$$\kappa_0 = rac{m}{ au_0 D}$$

$$\mu = \frac{\tau_0}{\tau} = 1 - \Gamma$$

Walking threshold		High memory				
Γ	=	0	I	Г	=	1
μ	=	1		μ	=	0

The 3D pilot-wave field

Helical spin states

$$\mathbf{x}(t) = r\cos\omega t \,\mathbf{i} + r\sin\omega t \,\mathbf{j} + vt \,\mathbf{k}$$

• may exist provided:

$$-\kappa_0 \omega_0^2 = 3 \int_0^\infty \frac{j_1(D)}{D} \left(1 - \cos \omega_0 \tau\right) e^{-\mu \tau} d\tau$$
$$\omega_0 = 3 \int_0^\infty \frac{j_1(D)}{D} \sin (\omega_0 \tau) e^{-\mu \tau} d\tau$$
$$1 = 3 \int_0^\infty \frac{j_1(D)}{D} \tau e^{-\mu \tau} d\tau$$

where
$$D = \sqrt{4r^2 \sin^2 \frac{\omega \tau}{2} + v^2 \tau^2}$$

Helical spin states

• double quantization, with discrete solutions in both radius, and pitch angle.

Regime diagram in 3D

 x/λ

4

-2

0

A generalized pilot-wave framework

(Bush ARFM 2015, *Durey & Bush, 2020*)

• retain key features of walker system

(memory, resonance, quasi-monochromatic wave field)

- explore beyond the range of the hydrodynamic system
- discovered new quantum features

- stable spin states, purely stochastic regime, in-line oscillations

- extended to 3D, where helical spin states were found
- connect to and inform quantum pilot-wave theories

BIG PICTURE

• the landscape before PWH: classical mechanics and quantum mechanics

Classical Mechanics

Quantum Mechanics

BIG PICTURE

BIG PICTURE

• has motivated exploration of the Generalized Pilot-wave Framework

