HQA Lecture 19

The hydrodynamic corral



The fluid corral experiments

e corral depth of 6mm, radius 1-3cm; driving frequency 40-70Hz

Interface _l'

— <— Corral

Shaker

Droplet can only walk in the deep central region, thus
remains confined within the “corral”






Circular Faraday modes

(V2+k*)h=0
him = Ji(kimr) sin(10 + ¢)

Benjamin and Ursell (1954) CI\]

Faraday wave mode observed above threshold is
determined by forcing frequency and boundary
conditions

[ =3



Small corrals

e walls play role of confining central force; periodic/quasiperiodic orbits prevalent

Wave
mode
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Small corrals R =10.1 mm
e walls play role of confining central force; periodic orbits prevalent

ylye = 0.88 ylys =091 ylyp = 0.935 ylye = 0.94
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Small corrals

e walls play role of confining central force; periodic orbits prevalent
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¢ dynamical behavior reminiscent of that of a walker in a SHO



Small corrals at high Me
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Small corrals at high Me ylyp = 0.95

¢ intermittent switching between a number of accessible periodic orbits
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e statistical behavior reminiscent of that of a walker in a SHO



Walkers in a larger circular corral

R =20.2 mm

¢ the droplet excites and explores the resonant wave field of the cavity



Influence of memory R =20.2 mm

Increased forcing amplitude

(a)

e walker motion becomes progressively more irregular with memory



e the droplet generates and explores its wave field



e strobe at the wave (and bouncing) frequency, 70 Hz

e fast bouncing dynamics filtered out

e drop appears to surf along the surface, guided by its pilot wave



The quantum corral
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Selected Faraday mode

Most unstable mode above the Faraday threshold at f =70 Hz



v/vF = 0.99

Speed (mm/s)
R =14.3 mm ‘




Probability density function

¢ emergent statistics not inconsistent with the notion of particle trajectories
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e max in surface perturbation amplitude correspond to peaks in pdf

e pdf prescribed by amplitude of the most unstable resonant wave mode of the cavity



Emerging physical picture:
3 time scales

fast

intermediate

long-term statistical




Analogy with quantum corrals

Crommie, Lutz, & Eigler, Science (1993) Harris et al., PRE

* 1n quantum corral, electron statistics prescribed by the solution to the time-
independent Schrodinger equation in circular geometry with de Broglie wavelength

* 1n fluid corral, walker statistics are defined by the solution to wave equation in
circular geometry with Faraday wavelength

e statistics prescribed by Born rule in QM, not in the hydrodynamic system



Quantum particles Bouncing droplets




Quantum particles Bouncing droplets

Hidden Variable Theory



Elliptical corral
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Path length: P;, = 2a = 28.5 mm

C
Eccentricity: € = — = 0.5
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Faraday Waves: Oscillation of an elliptic membrane
E. Mathieu, “Le mouvement vibratoire d’une membrane de forme
elliptique,” J. Math. Pures Appl. 13, 137-203 (1868).

Two-dimensional Helmholtz equation:

0*U N 0*U
ox?  Oy?

+ kU =0

Transform to elliptic coordinates
and seek solutions of the form:

+— U(&n) = R(&)P(n)

Angular and radial Mathieu equations:
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Waves modes

Experiments

25



Waves modes




Wave forms arising at high Me




Instantaneous pilot-wave field

e at any given instant, the pilot-wave differs from the most unstable cavity modes

e but vestiges of the cavity modes may be apparent



The elliptical corral

Trajectories Mean speed

e correlation between position and speed, as in the circular corral

- Saenz, Cristea-Platon & Bush, Nat. Phys. (2018)



Elliptical corral - Probability density function
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Elliptical corral - Probability density function
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Theoretical eigenmode Faraday waves Walker’s histogram



Mode superposition £ = 72Hz

Particle’s histogram

e cmergent statistics do not correspond to the
most unstable Faraday mode at 72 Hz

e drop introduces a second mode that is the most
unstable Faraday mode at 70 Hz

Mode superposition

f =70 Hz f="T72Hz

—

A superposition of statistical states



A new diagnostic: mean velocity

Position histogram (pdf) Mean speed and velocity

20 60 100 140 180

4 8
N V (mm/s)

e while the mean velocity is zero in a circular corral, a quadrupolar flow
emerges in the ellipse

e relation to Bohmian mechanics?



Fiete & Heller (2002)

Projection effects: the “quantum mirage’

¢ placing an impurity at one focus results in a “mirage’ at the other focus

e cffect pronounced in differential conductivity, as depends strongly on pdf




Topographic control of walker statistics

e in shallow-water limit, h = 1.7mm, the walker feels the bottom topography
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* the walker 1s generally attracted to the well

 arbitrary placement of well simply disrupts coherence of pdf



Well at midpoint of semi-minor axis

Cavity mode Mean wave field

Mean velocity

V (mm/s)

e well is not projected: acts to disrupt pdf, which is relatively incoherent



Well at left focus
Cavity mode Mean wave field

-

PDF Mean velocity
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e by preferentially selecting (4,4) mode, well is projected towards empty focus

e cffect on pdf more pronounced than in quantum corral (Eric Heller)



An analog of the 'quantum mirage’

¢ a hole at one focus induces a mirage at the other by favoring one cavity mode




A striking equivalence

Instantaneous wave Average wave Particle’s histogram

Mode superposition
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A superposition of statistical states



The mean pilot-wave field

Average wave 77 (X) Particle’s histogram Iu (X)

Instantaneous wave
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Theorem (Durey, Milewski & Bush 2018)

109 = [ m(x=y) uy) dy = ()

FOR PERIODIC OR CHAOTIC TRAJECTORIES .n.uz“

e the average wave field, ﬁ(X) , corresponds to the convolution of the pdf, ,u(x) ;
and the wave field of a stationary bouncing droplet, 75 (X)

e result deduced from the stroboscopic assumption, which breaks down at high Me



The mean pilot-wave field of a circular orbit

We consider a drop 1n a circular orbit of radius 7owith constant speed.
Its mean wavefield may be computed analytically in polar coordinates

6 g

np = ApJo(|x]) and  pu(y) =d(ly])/(2mro)

100 = [ ms(x=y)u(y)dy

=AB/ Jo(W2+p2—QTPCOS(H)W(p—?“o)pdpd@
RZ

27'('?“0

n(r) = ApJo(ro)Jo(r)

The mean wavefield has the form of a Bessel function centered on the
orbital center, and an amplitude prescribed by the orbital radius.



The convolution result: relates waveforms to trajectories

5
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e prevalence of orbits with radii at

zeros of Jo(T) suggests dominance
of wave energy

e suggests that wave modes have
corresponding periodic trajectories



Quantum particles Bouncing droplets

Fiete & Heller (2003)




Observation (from both experiments and simulations)

e when walker motion is confined by boundaries or applied forces, the

instantaneous pilot wave approaches the mean wave field at high Me

e.g. simulated 1D pilot-wave dynamics in a simple harmonic potential

Me = 5000

Durey, Milewski & Bush (2018)



Histogram of Particle Location

Convolution Field
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Mechanism for the coherent emergent statistics at hight Me?

® two possible mechanisms have been proposed
® based on the 2 existing HQA paradigms

¢ their shortcomings have prompted the development of Paradigm III



Paradigm I: orbital suggested by dynamics

¢ at low memory, circular orbits along extrema of cavity mode are stable

¢ at higher memory, these orbits destabilize, yield to chaotic pilot-wave dynamics
¢ intermittent switching between periodic states results in multimodal statistics

Harris et al. (2013)



Paradigm II: Friedel oscillations from the outer boundaries

e in-line oscillations with A5 excited at corral’s edge

o preferred reflection angle of @, = 60° gives rise to

statistical signature with wavelength

Apcosm/3 = Ap/2




Paradigm II: Friedel oscillations from the outer boundaries
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e decompose wave force into mean and perturbation components

SMALL
e view the perturbation pilot-wave field as a stochastic forcing

STOCHASTIC
TERM

e mean wave field plays the role of an imposed potential, and is related to
the pdf through the convolution relation

® the statistics appear to be driving the dynamics...

What relation does this physical picture have to quantum mechanics?



Schrodinger:

Madelung transformation (1928):

Continuity:

Quantum
Hamilton-Jacobi:

QUANTUM POTENTIAL Q
where is the probability density, is the action,

is the quantum velocity of probability,

is the quantum probability flux.



e cquate quantum velocity of probability  and particle velocity

e solve Schrodinger’s equation for , from which 1s computed

: c David Bohm
® solve trajectory equation

¢ quantum potential is nonlocal, imposed by fiat

® requires distribution as initial conditions in order for results to be
equivalent to those of standard QM (Keller 1966) ; e.g. in corral

® invoke a stochastic forcing from a “sub quantum realm’:

e particles jostle about  like Brownian motion of gas molecules about streamlines



WAVELENGTH

STOCHASTIC
FORCING

ARBITRARY, ad hoc

PERTURBATION WAVE FIELD

NONE

PARTICLE VIBRATION




This is NOT Bohmian mechanics!

Particle’s histogram

Time-dependent pilot-wave "Bohmian’ pilot wave = time-averaged pilot wave

e Bohm: predictions are consistent if you choose ICs appropriately
e Joe Keller: “A self-consistent theory need not impose prescribed ICs.”

e Bohm: " You can never have a pure cavity mode”.



This is NOT Bohmian mechanics, but...

e can we formulate a Bohmian mechanics to describe the mean velocity?

Cavity mode Time-dependent pilot-wave
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‘Bohmian’ pilot wave = time-averaged pilot wave Particle’s histogram




Walkers suggest a means of revising Bohmian mechanics
¢ consider high-frequency particle vibrations as the source of pilot wave
¢ the mean-pilot-wave field is related to the emergent statistical waveform (analog of Q)

¢ the instantaneous pilot wave differs owing to the disturbance induced by particle

Instantaneous

Cavity mode
pilot wave

"Bohmian’ potential
= mean pilot wave

Particle
histogram




“ A freely moving body follows a trajectory that is orthogonal
to the surfaces of an associated wave guide”.

1s the probability wave, as prescribed by standard quantum theory

wave generated by internal particle vibration
(Zitterbewegung) at the Compton frequency:

is a real physical wave responsible for guiding the particle

s

a solution of Klein-Gordon equation triggered by oscillations in rest mass

particle pushed perpendicular to surfaces of constant phase:

differs from

for a monochromatic wave

: the particle oscillates in resonance with its guiding wave

owing to nonlinearity in the vicinity of the particle



dynamics: mass oscillations at

create wave field

centered on particle

pilot-wave dynamics:

particle rides its guiding wave field

behaviour described by

wave function of standard quantum theory

4
|

—

Fiete & Heller (2003)







Subsequent work on corrals

— unpublished experiments



Later work ... Wave mode analysis
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Figure A-26: Azimuthally symmetric instantaneous wave field when the droplet is ex-
ploring the circular corral of diameter D = 28.5 mm, vibrated vertically at f = 70 Hz.
a Instantaneous wave field displaying the dominantly described by one azimuthally
symmetric mode. Overlaid in white is an example of the walker trajectory (of duration
~ 1s). b The weights of the five most prominent modes present in the reconstruction
of the mean wave field.



Wave mode analysis

-0.18 0 0.15
Wave Amplitude (mm)

51 44

52 6,0 3,7
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Figure A-25: Instantaneous wave field when the droplet is exploring the circular corral
of diameter D = 28.5 mm, vibrated vertically at f = 70 Hz. a An arbitrary selected
instantaneous wave field. Overlaid in white is an example of the walker trajectory
(of duration ~ 10 s). b The weights of the five most dominant modes present in the
reconstruction of an arbitrary selected instantaneous wave field.



Wave mode analysis
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Figure A-27: Non-azimuthally symmetric instantaneous wave field when the droplet
is exploring the circular corral of diameter DD = 28.5 mm, vibrated vertically at
f = 70 Hz. a Instantaneous wave field displaying the dominantly described by one
non-azimuthally symmetric mode. Overlaid in white is an example of the walker
trajectory (of duration ~ 1 s). b The weights of the five most prominent modes
present in the reconstruction of the mean wave field.



Average speed map

5 min 30 min 60 min

e speed map converges after 180 minutes,
corresponding to the timescale of statistical

convergence

180 min
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Non-axisymmetric modes?

e non-axisymmetry lost in long-term statistics,
since waves mostly generated by the walker

e observed pdf represents azimuthally averaged
wave amplitude

e Or is the minimum on axis retained?







Walker in a square corral

¢ the walker excites and explores the resonant wave field of the cavity



Stadium corral
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tangular corral

ing in a narrow rec

A droplet walk
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Theoretical modeling of the circular corral

I Fluid Mech (2020). wai. 891, ALl © Tha Authoeizi, 2020 891 As-]
Published by Cumbridge University Press
Joi: 10,1017/ f1. 2020, 140

Faraday pilot-wave dynamics in a circular corral

Matthew Durey' "+, Paul A. Milewski' and Zhan Wang'

IMepurtment of Mathenatical Sciemnces. University of Rath, Bath RA2 7AY, UK
2[)c':[.\zs\nmrwt of Mathematics, Massachusens Institure of Technology, Cambridge, MA 02139, USA

:(Kc)' Laboratory for Mechanics in Fhuid Solid Coupling Systems. Institute of Mechanics, Chinese
Academy of Saences, Bapng 1001, PR China

e strobe-based model correctly captures low Me behavior

e fails to predict emergent statistical behavior arising at high Me



Stability of circular orbits
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Evolution of periodic orbits R =10 mm
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Regime diagram: dependence on corral radius, memory
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Regime diagram: circular corral experiments
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Theoretical modeling of the circular corral

PHYSICAL REVIEW E 93, 042202 (2016)

Quantumlike statistics of deterministic wave-particle interactions in a circular cavity

Tristan Gilet”
Microfluidics Lab, Department of Aerospace and Mechanics, University of Liége, B-4000 Liége. Belgium
(Received 21 January 2016: published 5 April 2016)

TABLE L. Twelve dominant Neumann cigenmaodes for a cavity
of radius 14.3 mm filled with 20 ¢S oil and forced at 83 Hz.
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Theoretical modeling of the circular corral
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e only model to capture emergent statistical behavior in the circular corral



Summary of theoretical modeling

stroboscopic models of Faria, Durey capture low Me behavior
these models fail to capture chaotic dynamics arising at high Me

they also fail to capture the coherent statistics arising at high Me

only Gilet’s model successfully models emergent high Me statistical behavior
Why?

stroboscopic models neglect non-resonant effects

neglect of drop inertia makes drop more skittish, as do non resonance effects

What’s next?

HQA Paradigm 3



¢ in the high-memory limit, the mean-pilot-wave field plays the role of the
quantum potential in Bohmian mechanics

- the statistics appear to influence the dynamics

¢ the instantaneous wave field differs from the mean in a manner that depends
on the system memory

- one expects the relative magnitudes of the mean and perturbation
fields to be an important parameter

the hydrodynamic pilot-wave system suggests a means of resolving difficulties
of Bohmian mechanics, by enriching the dynamics a la de Broglie

e consider relaxation to statistical steady state from an ensemble of ICs

e consideration of non-resonant effects will lead us to Paradigm III in HQA



