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I.  Friedel oscillations
               

II.   Spin lattices

III.  Walkers on gentle slopes
               



Hydrodynamic spin lattices





Effect of outer layer thickness
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Tighter trapped states emerge for decreasing liquid heights!

•  adopt the geometry considered in the Friedel oscillations analog



Bottom topography can be exploited to induce effective attractive potentials.

Variable bottom topography

A submerged well may serve to stabilize a hydrodynamic “spin state”

D ⇠ 10mm h ⇠ 1mm
Drop trapped over a 

submerged well



Effect of memory on individual spin states

•  circular spin states destabilize to wobbling trefoils at high memory



SPIN LATTICES OF WALKING DROPLETS

Spin dynamics become coupled through 
wave-mediated interactions!

The pair-pair coupling can be controlled through several parameters

Control parameters

• Geometry

• Vibrational acceleration

• Drop size

• Frequency

�/�F � 0.990



CHARACTERIZING COLLECTIVE BEHAVIOR

Spin-spin correlation
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Out	of	phase

Mixed	phase

In	phase

The influence of bouncing phase on spin correlations

•  correlations most pronounced when all droplets are bouncing in phase



Vibrational acceleration plays the role of an effective temperature.
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L = 17.7 mm γ/γF = 0.82
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Preferred antiferromagnetic order
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L = 17.7 mm

•  fix geometry, increase memory slightly



Preferred ferromagnetic order

L = 13.2 •  fix memory, alter lattice spacing L



VARYING WELL SPACING
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4 preferred correlated

spin states



INTERACTION POTENTIAL

Low memory

Force in direction of motion

Expand for

Circular motion



MODELING
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EXTERNAL FIELD

External Field
~B

Transition to ferromagnetic order?

Lorentz force  
on moving charge  
in magnetic field

Coriolis force  
on moving mass 

in rotating frame

Fq = qE+ qv ⇥B

FC = 2mv ⇥⌦

Antiferromagnetic 
configuration



CORIOLIS FORCE AS CONTROL PARAMETER

NO ROTATION

Transition through Coriolis force!
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BATH ROTATION



L = 13.2



L = 17.7 mm γ/γF = 0.82
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Antiferromagnetic order geometrically frustrated

Effect of lattice geometry?

COLLECTIVE DYNAMICS IN 2D LATTICES?

Collective dynamics are robust in 2D!
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Summary

•  wave-mediated interactions may lead to long-range spin-spin correlations

•  correlations may be altered, reversed using system geometry and memory

•  analog ferromagnetic and antiferromagnetic states

•  memory plays a role analogous to temperature in altering emergent states

•  rotation may also prompt transitions between anti- and ferromagnetic states

•  provides a possible platform for Bell tests

Future directions

•  current theoretical models used to justify emergent behavior are nonlocal

•  well topography may stabilize hydrodynamic spin states

•  theoretical characterization of spin waves sweeping through the lattice

•  qualitative behavior captured by reduced theoretical model





Walkers on shallow slopes

PhD of Sam Turton (2020)

•  droplets feel lower boundary for sufficiently shallow layers,  h < 0.6cm



Bouncer on a slope

•  drift slowly into deep region, 
    presumably to minimize dissipation



Walkers on a cone
•  execute circular orbits or more complex
    periodic or quasiperiodic orbits



Theoretical modeling

Trajectory equation in the weak acceleration limit:

Topography:

Wave form:

where

Downslope force:

Anisotropic drag:

drives drop into deeper fluid

favors motion into deeper fluid,

vanishes for azimuthal motion


,



Bouncer on a slope

Seek drifting solution:

where



Bouncer on a cone

Seek orbital solutions:

To find: free walking speed

where

and radiusOrbital frequency





•  slowly-varying topography difficult to model: spatially dependent memory

Summary

To what extent can we think of topographic anomalies as the 
generators of forces?

Interesting question

•   topography induces down-slope force and anisotropic drag

•   conical bottom topography supports orbital motion

•   only in a limited number of special cases

•   force generally depends on history, manner of approach

E.g.1   Walkers interacting with pillars, wells

E.g.2   Walkers orbiting above a conical substrate




