HQA Lecture 18

I. Friedel oscillations

II. Spin lattices

III. Walkers on gentle slopes

Summary

- we now have the means to describe walkers interacting with boundaries
 - 1) Faria's strobe-based model for discrete steps in topography
 - 2) Nachbin's model for 1D motion with discrete steps in topography
- we here consider a new example of walker-topography interactions
 will lead to Paradigm 2 for the emergence of quantum behavior
- we'll also consider the effects of slowly-varying topography

Interesting question

To what extent can we think of topographic anomalies as the generators of forces?

Friedel oscillations

• a walker interacts with a submerged well

SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

A hydrodynamic analog of Friedel oscillations

Pedro J. Sáenz^{1,2}*, Tudor Cristea-Platon², John W. M. Bush²*

• yields the second paradigm for quantum behavior in HQAs

Friedel oscillations

• modulations of the probability density of the electron-sea on a metallic substrate due to the presence of a scattering impurity

Crommie et al. (1993)

Mallet et al. (2016)

Unknown interaction mechanism Modeled as localized scattering potentials

IMPURITIES IN CONDENSED MATTER

Localized irregularity in an otherwise homogeneous medium

Impurities play a critical role on the **mobility of charge carriers**

WALKER-WELL INTERACTION

Experimental Setup

Well Region of high excitability

 $\gamma_F^H < \gamma_F < \gamma_F^h$

 $\gamma/\gamma_F = 0.990$

WALKER-WELL INTERACTION

Experimental Setup

Well Region of high excitability $\gamma_F^H < \gamma_F < \gamma_F^h$

Drop drawn in along an Archimedean spiral

Speed modulations induced by interaction with waves generated above the well

WALKER-WELL INTERACTION

Experimental Setup

Well Region of high excitability $\gamma_F^H < \gamma_F < \gamma_F^h$

Drop drawn in along an Archimedean spiral

Speed modulations induced by interaction with waves generated above the well

Droplet speed map

Incoming trajectories

Outgoing trajectories

Statistics

A hydrodynamic analog of Friedel oscillations

Sáenz, Cristea-Platon & Bush (Sci. Advances, 2020)

• arises due to wave-induced speed modulations in outgoing trajectory

Friedel-like oscillations are *not* inconsistent with the notion of particle trajectories

Simulations via Faria...

J. Fhuid Mech. (2017), vol. 811, pp. 51-66. © Cambridge University Press 2016 doi:10.1017/jfm.2016.750

A model for Faraday pilot waves over variable topography

Luiz M. Faria†

Department of Mathematics, Massachusets Institute of Technology, Cambridge, MA 02139, USA

$$\phi_t = -g(t)\eta + \frac{\sigma}{\rho}\Delta_\perp \eta + 2\nu^* \Delta_\perp \phi - \frac{1}{\rho}P_D(\mathbf{x} - \mathbf{x}_p(t), t), \qquad (2.13)$$

$$\eta_t = -\nabla_{\perp} \cdot (b\nabla_{\perp}\phi) + 2\nu^* \Delta_{\perp}\eta. \qquad (2.14)$$

51

$$m\frac{\mathrm{d}^2 \mathbf{x}_p}{\mathrm{d}t^2} + \left(c_4 \sqrt{\frac{\rho R_0}{\sigma}} F(t) + 6\pi R_0 \mu_{air}\right) \frac{\mathrm{d}\mathbf{x}_p}{\mathrm{d}t} = -F(t) \nabla \eta|_{\mathbf{x}=\mathbf{x}_p}.$$
 (2.15)

$$b(\mathbf{x}) = \begin{cases} \tanh(k_{F_0}h_0)/k_{F_0} & \text{for } \mathbf{x} \in \mathcal{D}, \\ \tanh(k_{F_1}h_1)/k_{F_1} & \text{for } \mathbf{x} \notin \mathcal{D}. \end{cases}$$
(2.10)

$$P_D = \frac{F(t)}{\lambda_F^2} \delta\left(\frac{\mathbf{x} - \mathbf{x}_p}{\lambda_F}\right). \tag{3.9}$$

Droplet Speed Map

... performed by Pedro Sáenz

Experimental spirals

Experiments

Simulations

Droplet trajectories

Simulations

Scattering Angle

- slower drops spend more time on spiral
- tethering
 length
 decreases
 with memory

Infer effective force from trajectory

Unique spiral

Archimedean Spiral: $r(\theta) = a + b\theta$ Constant speed: $v^2 = \dot{r}^2 + (r\dot{\theta})^2$ Equation of Motion: $m\frac{d\mathbf{v}}{dt} = \mathbf{F}_w$ Effective force: $\mathbf{F}_w = m\left(1 + \frac{\dot{r}^2}{v^2}\right)(\dot{\mathbf{\Theta}} \times \mathbf{v})$

Wave fields

Experiment

Simulations

Anomalous wave field

$$\mathbf{F}_{w} = m \left(1 + \frac{\dot{r}^{2}}{v^{2}} \right) (\dot{\boldsymbol{\Theta}} \times \mathbf{v})$$

Wavelike statistics (outgoing) Resonant waves centered at well

Mechanism

Detailed wave-mediated interaction mechanism

Friedel from the border

Summary

Localized wavelike statistics from speed modulation in outgoing trajectories

Friedel Oscillations

HQA Paradigm II : in-line oscillations

I. FREE WALKER

Wind-Willassen et al. (2013), Bacot et al. (2019)

• correlation between speed and position lead to a statistical signature with the pilot wavelength

II. FRIEDEL OSCILLATIONS

III. 1D SPRING FORCE

• provides mechanism for emergent statistics in Friedel oscillations and 1D SHO, other systems where topography provides geometric anchor