
                   HQA Lecture 15

I.   Limitations of the stroboscopic model
                — dynamic bound states

II.   The boost model
                — scattering off a pillar



Pilot-wave harmonic oscillator with strobe model
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                      Pilot-wave dynamics and the 1D harmonic oscillator
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Walking along a line in a central force field

MAGNET

F = −kx

Wavefunctions of quantum
       harmonic oscillator
            

•  coherent, wave-like statistics emerge from an underlying pilot-wave dynamics 

         CLASSICAL

          QUANTUM
 

•  structure rooted in in-line speed oscillations with the Faraday wavelength 



•  we have seen the success of the stroboscopic model in capturing the behavior
    of single-particle systems

•  we proceed by enumerating its shortcomings in several multiple-particle systems

Stroboscopic model

 —  there is a single fudge factor, the impact phase

 —  here, consideration must be given to the far-field form of the wave



Dynamic bound states: orbiting pairs

•  impinging pairs may scatter or lock into orbit 

Couder et al. (2005), Protiere et al. (2006ab)

Oza et al. (2017), Tadrist & Gilet (2018)

                                  



Orbiting pairs

Couder et al. (2005), Protiere et al. (2006ab)

Oza et al. (2017), Tadrist & Gilet (2018)

                                  



Orbiting pairs



Orbiting pairs
• different orbital modes accessible according to relative bouncing phase of walkers  



Theoretical model: 2-particle stroboscopic model

•  drops move in response to the wave field produced by themselves and their neighbors 

Trajectory equation

is the relative phase parameter

is the sine of the mean impact phase and

Deduce S experimentally…

= ± 1

     SPATIO-TEMPORAL

         DAMPING

where

Wave field

is the wave kernel

Note:  far-field form of wave field unimportant for many single-droplet settings,

             but must be considered here



Infer phase parameter by matching for orbital speed



Orbiting identical pairs: stability      (Oza et al. 2017)       

• indicates importance of spatial damping and phase adaptation on stability   

• required deduction of dependence of the impact phase on memory, local wave amplitude   

… with spatial damping

… with spatial damping & phase adaptation

Strobe model



•  a pair of walking drops bound by their wave fields

Borghesi et al. (2015)

Arbelaiz et al. (2017)Promenading pairs



Promenading pairs:  Experiments



Promenading pairs:  Experiments

• different modes accessible according to relative bouncing phase of walkers  

N = 1 N = 2

N = 1.5 N = 2.5



Promenading pairs:  Experiments



Promenading pairs:  Diagnostics



Infer phase parameter by matching for orbital speed



Promenading pairs:  Experiments

• promenade modes may destabilize at high memory  

• shift from one dynamic bound state to another

Energetic rationale? 



Theoretical model: 2-particle stroboscopic model

•  drops move in response to the wave field produced by themselves and their neighbors 

Trajectory equation

Wave field

where is the relative phase parameter

is the sine of the mean impact phase and

= ± 1

     TEMPORAL

       DAMPING

• stroboscopic model again has limitations in capturing observed behavior  

• quantitative agreement requires consideration of phase adaptation   



Promenade mode: stability    (Arbelaiz et al. 2016)t al. 2016      

• indicates importance of phase adaptation on stability   
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• assess stability of promenading states using the stroboscopic model   



Promenade mode: stability    (Arbelaiz et al. 2016)t al. 2016      

• compare observed and predicted onsets of instability   

• stroboscopic model again has limitations in capturing observed behavior  
• quantitative agreement requires consideration of phase adaptation   



Promenade mode:  binding energy   (Arbelaiz et al. 2016)t al. 2016      

• binding energies of different promenade modes does not determine their     
relative stabilities:  modulation in vertical dynamics energetically dominant

Area = binding energy



Summary of dynamic bound states

•  shortcomings suggest importance of phase variability, non-resonant effects

•  strobe model captures behavior of orbiting, promenading pairs qualitatively

•  revisit, consider system energetics: which states are the most energetic?

Left on the table





The wave-induced added mass of walking droplets



Walking drops

•  bears a strong resemblance to de Broglie’s relativistic pilot-wave theory    

•  exhibit several features reminiscent of quantum systems (Couder & coworkers)

Is this true in the hydrodynamic pilot-wave system?

- an attempt to reconcile relativity and quantum mechanics 

So, what is the field in QM?

•  workers in Stochastic Electrodynamics suggest an EM pilot wave

•  others have suggested the Higgs field, and gravitational waves

A feature of particle motion in SED

•  particle mass is altered through interaction with the zero-point field

•  inertial mass is viewed a place holder for electromagnetic energy

 (Rueda & Haisch, 2005)



What is the mass of a walker?

What would the dynamics look like if we denied the
                 presence of the guiding wave?

Three interesting questions…

Perspective

•  the walking droplet system is damped and driven

•  there are steady and periodic states in which the driving and dissipation cancel

Is there an inviscid description of these states?



Origins of the boost factor idea
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•  owing to curvature of path, the resulting wave force has a radial component 

•  the wave field is dominated by that from most recent impact 

•  drop appears to be heavier than it is, owing to its pilot wave field 



Integro-differential trajectory equation

Expand wave force in weak acceleration limit

- walker accelerates over a time long relative to the memory time

Trajectory equation
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�B = 1 +
�

2(1 + v2)3/2

mw = �B m0

pw = �B m0 v

The hydrodynamic boost factor

Walker mass: 

Walker momentum:
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Trajectory equation

Boost Factor

at free walking speed

•  inviscid dynamics of a particle with a speed-dependent mass

Walker momentum

Walker mass mw = �B m0

p = mw v = �B m0 v

d

dt
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u0 =ω r0

Steady circular motion

Tangential and normal components of trajectory equation:

Coriolis force

x(t) =  ( r0 cosωt, r0 sinωt )

Tangential:

Radial:

Steady walking speed obtains:

r0!
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f = 2m0 v ⇥⌦

Central force

Two special cases

f = �kx

Fort et al. (2010),  Harris & Bush (2014) Perrard et al. (2014)



Fort et al. (2010)

Walkers in a rotating frame

								offset	from	classical	results	

			due	to	hydrodynamic	boost	factor
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Orbits in a central force
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        offset from classical results 

   due to hydrodynamic boost factor

�/�F = 0.9



The Boost equation

For motion at the free walking speed:

•  the inviscid dynamics of a particle with a speed-dependent mass

 In the weak-acceleration limit, the trajectory equation takes the form

 where the walker mass                                          , momentummw = �B(v) m0 pw = mwv

d

dt
pw + Dw v = F

Dw = D0
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 depend on the hydrodynamic boost factor:

 Bush et al. (JFM 2014)

 where the walker mass                                          and a nonlinear drag  drives it to its free walking speed.

d

dt
pw = F



What is the mass of a walker?

What would the dynamics look like if we denied the
                 presence of the guiding wave?

Answers to our interesting questions…

•  the inviscid dynamics of a particle with a speed-dependent mass

 where
d

dt
pw = f pw = m0�B(v) v

Is there an inviscid description of these states?

mw = �B(v) m0

 BOOST 
FACTOR 

  One would observe the dynamics of a particle with a speed-dependent 
mass and a nonlinear drag that drives it towards a constant speed.



Compare generalized boost model and LAD equation 
Sam Turton’s thesis 

LAD equation:



Caveats

•  walking drops exhibit features of SED

•  analysis holds only in the low-acceleration regime

If one were unaware of the underlying wave field, one would observe
  the inviscid dynamics of a particle with a speed-dependent mass.

Boost summary

•  hydrodynamic boost factor indicates the dependence of walker mass on speed 

•  provides rationale for anomalous radii of walkers in orbital states

•  analysis, based on strobed model, neglects variations in bouncing phase





Wave field measurements



Free-surface Schlieren



Bouncer wave field

Well fit by

Eq. (A47) in Molacek & Bush (2013a)



Walker wave field

Experiment Theory



Scattering off a submerged pillar
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Small Pillars (R = 0.5 mm)

•  continuous evolution of scattering angle       with impact parameter
•  walker simply scattered by small pillars
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Larger pillars:  R = 2.5mm



 

A typical trajectory

1. straight

2. bump

3. curved

4. straight 2
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•  walker bends towards the pillar



  

Effect of memory   (R = 2.5mm)
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•  walker locks onto a spiral trajectory at high memory



Effect of impact parameter



Effect of impact parameter

•    preferred angle replaced by a preferred spiral



Tethering
range 

Effect of impact parameter

•  walker locks onto the same spiral for most impact parameters



Universal spiral for given pillar size, memory

er

e✓ v

Align incoming trajectories

Vary impact parameter

Twist



Summary: effect of pillar size and memory on spiral

•  pitch angle increased with pillar size: smallest pillars have tightest spirals 

•  extent of spiral, tethering range increase with system memory

•  pitch angle decreases with system memory: tightest spirals at high Me



Surface Schlieren imaging: a walker interacts with a pillar

�/�F = 99.6%

•  pillar acts to locally suppress the walker-induced wave field



Beaming



Beaming



Beaming



Beaming



Beaming



Beaming



 What type of spiral? 

•  evident for all pillars above a critical size (R~ 0.5mm)



A logarithmic spiral
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Spirals: the blueprint of Nature

Logarithmic spiral

Tucker et al. Jour. Exp. Bio 2010



The logarithmic spiral:  kinematics
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• walker maintains a constant speed



The logarithmic spiral
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Rearrange and exponentiate:

Parametric equation: 

Radial and azimuthal 
displacements: 



The Boost equation

For motion at the free walking speed:

•  the inviscid dynamics of a particle with a speed-dependent mass

 In the weak-acceleration limit, the trajectory equation takes the form

 where the walker mass                                          , momentummw = �B(v) m0 pw = mwv

d

dt
pw + Dw v = F

Dw = D0
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 depend on the hydrodynamic boost factor:

 Bush et al. (JFM 2014)

 where the walker mass                                          and a nonlinear drag  drives it to its free walking speed.

d

dt
pw = F



Inferred force

er

Along the logarithmic spiral

Force balance:



Use Boost equation to infer pillar-induced force

 Force required for a logarithmic spiral: 

d

dt
pw = Fp

Fp = 2⇡ �Bm v ⇥⌦

 where                                  is the walker’s instantaneous angular velocity⌦ =
v✓
2⇡r

k̂

•  identical forms of Coriolis force acting on a mass

FB = q(v ∧ B) and the Lorentz force acting on a charge                                 was the basis

 for the analogy between inertial orbits and Landau levels  (Fort et al. 2010)

•  here, it indicates that the walker is analogous to a charge moving in the
    magnetic field associated with its own motion

 hydrodynamic self-induction

FC = 2m(v ^⌦)



Gravitoelectromagnetism

Lorentz force

• in limit of weak spacetime curvature (weak gravitational fields)



•  walkers scatter from small submerged pillars as if from a repulsive force

Conclusions

•  walkers lock into a logarithmic spiral when they encounter larger pillars

 EM analogy indicates ``hydrodynamic self-induction’’ 

Experiment

 gravitoEM indicates analogy with gravitational self-induction 

•  motivates models capable of accounting for boundary interactions


