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Faraday waves, Tibetan bowls and the fluid trampoline




FFaraday waves

Forcing parameter:
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Benjamin & Ursell (1954)

\

Application of BCs, and linear independence of require

MATHIEU’S EQUATION

where

e an inviscid fluid is always unstable to vibration ™



Kumar & Tuckerman (1994)

\
e stabilizes driven bath to Faraday waves
e prescribes critical acceleration required for instability
e.g. deep water capillary waves, (Douady 1990)
where driving frequency

e wavelength of instability prescribed by forcing frequency

e if surface perturbed near onset, only the most unstable wavelength persists:

other modes are damped by viscosity

e |ocalized forcing near onset creates a monochromatic wave field



Disturbance of forced and unforced interfaces

No forcing Faraday forcing




g+ I'coswt n

Faraday waves in PWH I | i i G o '

e viscosity favors the subharmonic Faraday wave, since higher frequency
waves suffer higher dissipation

e Faraday wavelength prescribed by standard dispersion relation with Wp = @ /2

w2 = (3 B4 gk> tanh kh
s p

corresponds to wavelength accompanying walking droplets

E.g. forf=80Hz, Ar =4.75mm in deep water (h>0.6 cm)

e above threshold, waves resisted by nonlinear effects, eventually break
e Faraday threshold, thus “"memory’, is depth dependent

e walkers bounce at wp = w/2 : bath as damped oscillator forced at resonance



Seek modes: Force via mass oscillations:

MATHIEU’S EQUATION

where

e any finite amplitude vibration  will give rise

to waves with a discrete set of frequencies:




® may also be generated by lateral boundary forcing

Faraday (1831)




Non-coalescence on a vibrated fluid bath




Non-coalescence on a vibrated fluid bath




“I have seen exactly what you describe - in my Tibetan singing bowls.”
- Rosie Warburton



e produced by Himalayan fire cults as early as 500 BC

e composed of an 11 metal alloy, plus traces of meteorite /

¢ used in shamanic rituals and religious ceremonies for:

healing, exorcism, shamanic journeying, meditation, chakra adjustment, and...



“Here, amongst the waning, be, in this realm of decline, be a sounding glass, shattering itself
in its sound. Be - and be aware the same, of the conditions of not being - the infinite reason of
your deep-rooted vibration, that you perform it to the fullest, this one time.



¢ 1600s: hand made by Himalayan fire cults for shamanic rituals
e 1950: taken to Tibet by those fleeing Chinese invasion

e [980: imported to Texas by a collector

e 2000: purchased by Rosie

e 2010: sent to MIT
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Vibrational modes ,
Rossing (1990)

Deformation modes
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Frequency Domain Plot of Sound
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Bending wave speed

where

Bending wave period

Modal dependence




(A.P. French, 1982)
Displacement:

System energy:

Deformation mode (2,0) KINETIC POTENTIAL

Frequency:



F h (1982), Apfel (1985
The glass half full rench (1982), Apfel (1985)

e consider the additional kinetic energy of the fluid

e {requency decreases with increasing depth
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Experiments: the hydrodynamics of the Tibetan singing bowl

Dimensionless acceleration:
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Tibet 3




Increasing vibration amplitude
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The influence of increasing amplitude Tibet 1, water, f = 187.5 Hz

Faraday waves Faraday waves Drop ejection

Faraday waves
w — : : b)

d)

e " i o
i i : ) i
) W

q “ " 4SO o S rt
, s i SR
‘ 1

['=1.84 \ I'=2.73

['=16.25

w? = [gk + 2k tanh hk
0
A~ 0.28 cm

v~ 39.2 cm/s




The influence of increasing amplitude

Faraday waves
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The influence of increasing amplitude Tibet 1, water,  f = 187.5 Hz

Faraday waves Faraday waves Faraday waves Drop ejection




The influence of increasing amplitude Tibet 1, water, f = 187.5 Hz

Faraday waves Faraday waves Faraday waves Drop ejection




Thresholds for Faraday waves
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Droplet generation via vibration




Interfacial fracture
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Thresholds for drop ejection itz et
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Droplet size distribution
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e droplet size consistent with Faraday wavelengths:

d,, = B (J / ,0)1/ 3wT2/3 Puthenveethil et al. (2009)




What about levitation?
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Levitating drops in the Tibetan singing bowl




Levitating drops in the Tibetan singing bowl




e amenability to walking depends on position

¢ region just below Faraday threshold limited to 4 circular arcs

coalescence
Zone
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waves




Conclusions

¢ have characterized the acoustics, hydrodynamics of the Tibetan singing bowl

e vibrational modes excite Faraday waves at its edge

e Faraday waves break, releasing droplets onto the surface

e droplets may bounce (but not walk) on the field of Faraday waves /

e Tibetan singing bowls: good for levitation, bad for quantum analogs




~ And he showed Pierre a globe, a living wavering ball of no dimensions, its surface
consisting of drops tightly packed together. The drops moved and shifted, now merging from
several into one, now dividing from one into many. Each drop strove to spread and take up the
most space, but the others, striving to do the same, pressed against it, sometimes destroying,
sometimes merging.”

“This is life”, said the old teacher. “In the center is God, and each drop strives to expand in
order to reflect Him in the greatest measure. It grows, merges and shrinks, is obliterated on the
surface, vanishes into the depths, then resurfaces.” ’



Half time



Part II The fluid trampoline:
droplets bouncing on a soap film




® Couder’s wave-particle duality

on the macroscopic scale

¢ modeling difficulties: must
describe flow in drop, bath
and intervening air layer

Video courtesy of Suzie Protiere

We here examine , for which
bouncing states can be characterized exactly.

This will turn out to be the simplest fluid mechanical
chaotic oscillator yet explored.



Henri Poincaré (1903): discovered chaos in exploring celestial mechanics
Ed Lorenz (EAPS, MIT): Deterministic non-periodic flow (1963)

the Howard-Malkus water wheel, a mechanical analogue of
the Lorenz system, developed in Applied Math Lab

Feigenbaum (1978) predicted chaos in 1D iterative maps, transition to

chaos via period-doubling cascades (governed by Feigenbaum numbers)

period-doubling transitions to chaos reported in various systems:
- thermal convection (Libchaber 1980, Gollub & Swinney 1981)
- the dripping faucet (Shaw, 1981)

- an elastic ball bouncing on an oscillating substrate (Tufillaro et al. 1992)

... and now.... ... the fluid trampoline .....



Droplet
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Key parameter: Acceleration:

¢ fluid is glycerine, water, Dove: viscosity 2 ¢S, surface tension 22 dynes/cm

® drop radius: R = 0.8 mm; frame radius A = 8 mm






e falling water droplets strike a horizontal soap film

BOUNCES PASSES THROUGH



partial coalescence
In various guises
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e air layer communicates stress from film to drop

e can deduce force on drop from film shape

e quasistatic: valid since impact speed (~20 cm/s) much less than capillary

wave speed on soap film (~3m/s)

spherical cap &
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Soap film model

® cxperiments versus theory
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Breakthrough criterion
Drop kinetic energy > Surface energy at breakthrough
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Breakthrough criterion

Drop kinetic energy > Surface energy at breakthrough

Bounce
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gravity spring dissipation

e spring acts only during impact with constant

e form of dissipation suggested by experiment:

e dissipation constant prescribed by experiment kg/m



Bouncing on a stationary film
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e KE lost with each successive impact



frequency f

amplitude B
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drops may be sustained indefinitely on the film, bounce periodically or chaotically



Bouncing criterion
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A bouncing state (m, n) bounces n times in m forcing periods.

1.e. one period of the trajectory corresponds to m
forcing periods and n bounces of the droplet
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gravity spring dissipation forcing

e spring acts only during impact with constant

e form of dissipation suggested by experiment:
e dissipation constant prescribed by experiment kg/m

¢ 2nd order equation rendered non-autonomous by the forcing



Introduce nondimensional variables

Nondimensional governing equation

® solve subject to initial conditions at impact

® recast as a system of three first order autonomous equations



Choose variables and

e similar to the Duffing equations, as describe 2 classic chaotic oscillators
¢ the inelastic bouncing ball (Mehta & Luck 1990)

¢ the parametrically forced pendulum (McLaughlin 1981)

® integrate system with a variety of initial conditions:



Multiple modes: permissible by virtue of different impact phases




Periodic mode 2,1) at 1' =1

dy/dt
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solutions may be displayed on a Poincare section made at impact:

system integrated numerically from one impact to the next for various

mitial conditions

define a 2D iterative map:

net energy gained by the drop during the 1 th bounce depends on
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Recall: a state (m, n) bounces n times in m forcing periods

Chaotic solution at



Complex periodic modes
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The bifurcation diagram
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Bifurcation diagram at w = 1.1
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¢ period doubling at values: 1.361,1.631,1.6679,1.67244,1.67319,
1.673349,1.673380.,...

e the first terms of the  suite:
73,8.1,6.0,4.7,5.1, ...

e converging to the Feigenbaum number, 4.6692... ?

e .. and the Golden Mean?



have deduced break-through criterion for drop striking a soap film

in the bouncing regime, the soap film behaves like a linear spring

simple We-dependence of coefficient of restitution allows for accurate
model of dissipation

bouncing dynamics described (nearly!) exactly by a 2nd order ODE

simple model captures simple periodic modes quantitatively, complex
periodic and chaotic modes qualitatively

bifurcation diagram reveals period-doubling transitions to Chaos

® among the simplest chaotic fluid systems yet explored

® first step towards modeling bouncing drops



every problem you work on has a biological application



Biological application




Lift force: where
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e if it swims through a periodic wave field at uniform speed, its dynamics

will be precisely analogous to that of a drop on a driven film

® a chaotic trajectory would surely assist its escape



