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Faraday waves, Tibetan bowls and the fluid trampoline



Faraday waves 

frequency f

•  surface undulations with twice the forcing period, a parametric instability

amplitude A

Forcing parameter: Γ = A(2πf)2/g

•  arise above a threshold that depends on fluid depth, viscosity, surface tension

g

Γ > Γc ≈ 4

ρ, ν

σ

Faraday (1831)
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Dispersion relation

•  wave form depends on           and 
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Faraday instability 

ρ, ν

σ

Benjamin & Ursell  (1954)
g + Γ cos ωt

Consider an inviscid vibrating bath:

, ∇ · u = 0

Conditions at surface:  

∂φ

∂t
+

1

2
u

2 +
σ

ρ
∇ · n + (g + Γ cos ωt)z = 0Bernoulli

Kinematic Dζ

Dt
= uz

n

h

ζ

z = h + ζ(x, y, t)

where u = ∇φ , φ is velocity potential

Linearize  in    Expand           in terms of eigenfunctions ζ, φζ , φ . Sm(x, y)
(

∂2

∂x2
+

∂2

∂y2
+ k2

m

)

Sm(x, y) = 0s.t. and k
2

m
are eigenvalues.

Du

Dt
= −

1

ρ
∇p − (g + Γ cos ωt)z



ρ, ν

σ

Benjamin & Ursell  (1954)
g + Γ cos ωtSolution expansions:  

Application of BCs, and linear independence of                     require 

where

n

h

ζ

ζ(x, y, t) =
∞∑

0

am(t) Sm(x, y)

Sm(x, y)

T = ωt/2

pm =
4km tanh kmh

ω2

(

g +
k2

m
σ

ρ

)

qm =
2kmΓ tanh kmh

ω2

d2am

dT 2
+ [ pm + 2qm cos 2T ] am = 0

p

q•  an inviscid fluid is always unstable to vibration

MATHIEU’S EQUATION
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The influence of viscosity

•  stabilizes driven bath to Faraday waves

Kumar & Tuckerman (1994)

driving frequencywhere 

•  prescribes critical acceleration required for instability

e.g.  deep water capillary waves, (Douady 1990)

•  wavelength of instability prescribed by forcing frequency

ω = 2ωF =

Γc = 8

(

ρ

σ

)1/3

ν ω
5/3

•  if surface perturbed near onset, only the most unstable wavelength persists:
other modes are damped by viscosity

•  localized forcing near onset creates a monochromatic wave field



Disturbance of forced and unforced interfaces

•  withdraw millimetric needle from interface

Faraday forcingNo forcing

•  field of Faraday waves persist •  waves quickly disperse 



ρ, ν

σ

g + Γ cos ωt

Faraday waves in PWH  

corresponds to wavelength accompanying walking droplets

n

h

ζ

•  viscosity favors the subharmonic Faraday wave, since higher frequency 
    waves suffer higher dissipation

ω2 =

(

σ

ρ
k3 + g k

)

tanh kh

•  Faraday wavelength prescribed by standard dispersion relation with 

F

E.g.   for f = 80 Hz,         = 4.75mm  in deep water  ( h > 0.6 cm)      
         

•  above threshold, waves resisted by nonlinear effects, eventually break  

•  Faraday threshold, thus `memory’, is depth dependent

•  walkers bounce at                     : bath as damped oscillator forced at resonance  



where p

q

 Parametric Instability
 in Klein-Gordon Eqn? 

φTT + [ p + 2q cos 2T ] φ = 0

MATHIEU’S   EQUATION

T = ωt/2  ,

q = 4 ε
ω

2
c

ω2

mc
2 = m0c

2 (1 + ε cos ωt)

•  any finite amplitude vibration       will give rise       

    to waves with a discrete set of frequencies:

ω

  ,

ωq =
n

2
ω , n = 1, 2, 3...

p =
4

ω2
(ω2

c
+ c2k2)

1

c2
Ψtt − ∇

2Ψ +
m2c2

h̄
2

Ψ = 0

Force via mass oscillations:  Seek modes:  

Ψ(x, t) = e−ik·r φ(t)

ωc =
moc

2

h̄



Faraday waves

Faraday (1831)
•  may also be generated by lateral boundary forcing



Non-coalescence on a vibrated fluid bath 

f ~ 30 Hz

30cS  
Si oil

Discovery Channel’s `Time Warp’



Non-coalescence on a vibrated fluid bath 

f ~ 30 Hz

30cS  
Si oil

“Your experiments are proof that God exists.”
- Rosie Warburton



“I have seen exactly what you describe - in my Tibetan singing bowls.”
                                                                                  - Rosie Warburton

Sound Body Wholistic Health Center 



The Tibetan singing bowl

•  produced by Himalayan fire cults as early as 500 BC

•  used in shamanic rituals and religious ceremonies for: 
          

•  composed of an 11 metal alloy, plus traces of meteorite

... levitation.

healing, exorcism, shamanic journeying, meditation, chakra adjustment, and... 



The Tibetan Singing Bowl

 “Here, amongst the waning, be, in this realm of decline, be a sounding glass, shattering itself 
in its sound. Be - and be aware the same, of the conditions of not being - the infinite reason of 
your deep-rooted vibration, that you perform it to the fullest, this one time.  
                                                                   
                                                                                                - Rilke, Sonette to Orpheus



The history of this bowl

•  1600s: hand made by Himalayan fire cults for shamanic rituals

•  1950: taken to Tibet by those fleeing Chinese invasion

•  1980: imported to Texas by a collector 

•  2000: purchased by Rosie 

•  2010: sent to MIT

1950

1650

1980

2010

1950



Singing bowls

Tibetan

Chinese



Singing bowls

French

Tibetan

Chinese



Singing bowls

French American

Tibetan

Chinese



Vibrational modes
Rossing (1990)

(2,0)Deformation modes

( n, m )

   nodal 
meridions

  nodal
parallels

Inácio, Henrique & Antunes: The Dynamics of Tibetan Singing Bowls 
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Figure 3. Experimental modal identification of Bowl 2: 

(a) Picture showing the measurement grid and accelerometer locations; (b) Modulus of the accelerance frequency response function. 

   (j,k) (2,0) (3,0)  (4,0)   (5,0)    (6,0)     (7,0)    (8,0) 

                       

                       

                           

                             

Figure 4. Perspective and top view of experimentally identified modeshapes (j,k) of the first 7 elastic mode-pairs of Bowl 2  
(j relates to the number of nodal meridians and k to the number of nodal circles – see text). 

Table I – Modal frequencies and frequency ratios of bowls 1, 2 and 3 (as well as their total masses MT and rim diameters φ). 

 Bowl 1 Bowl 2 Bowl 3 

Total Mass MT  = 934 g MT  = 563 g MT  = 557 g 

Diameter φ = 180 mm φ = 152 mm φ = 140 mm 

Mode 
A

nf  [Hz] B

nf  [Hz] 
1

AB AB

nf f  
A

nf  [Hz] B

nf  [Hz] 
1

AB AB

nf f  
A

nf  [Hz] B

nf  [Hz] 
1

AB AB

nf f  

(2,0) 219.6 220.6 1 310.2 312.1 1 513.0 523.6 1 

(3,0) 609.1 609.9 2.8 828.1 828.8 2.7 1451.2 1452.2 2.8 

(4,0) 1135.9 1139.7 5.2 1503.4 1506.7 4.8 2659.9 2682.9 5.2 

(5,0) 1787.6 1787.9 8.1 2328.1 2340.1 7.5 4083.0 4091.7 7.9 

(6,0) 2555.2 2564.8 11.6 3303.7 3312.7 10.6 5665.6 5669.8 10.9 

(7,0) 3427.0 3428.3 15.6 4413.2 4416.4 14.2 - - - 

(8,0) 4376.3 4389.4 19.9 5635.4 5642.0 18.1 - - - 
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Ignacio et al. (2006)



Acoustics of the singing bowl
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Acoustics of a struck bowl

f � 1
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The acoustics of an empty wine glass

�(t) = �0 cos �t

E = A

�
d�
dt

�2

+ B�2

�2 = B/A

Deformation mode (2,0)

Displacement: 

(A.P. French, 1982)

System energy: 
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d

Tibet 1

The glass half full

Text

•  consider the additional kinetic energy of the fluid

(ω0

ω

)2

∼ 1 +
α

5

ρ!R

ρsa

(

1 −

d

H

)4

•  frequency decreases with increasing depth

French (1982),

FULLEMPTY

Apfel (1985)



The glass harp 

Bach’s Toccata and Fugue in D minor
                     Robert Tiso 



� =
4�2f2�

g

f

Experiments: the hydrodynamics of the Tibetan singing bowl

•  measure natural frequencies of bowl following strike

•  force with a loud speaker at these natural frequencies

•  measure frequency     and amplitude      of wall motion via 
accelerometer, strain gauge

•  observe progression of flows as forcing acceleration     is increased�

Dimensionless acceleration:

∆

SPEAKER BOWL

ACCELEROMETER



� �

f = 279Hz
� =

4�2f2�
g

Tibet 3Increasing vibration amplitude



Tibet 1, water

� = 1.84 � = 2.73

� = 16.25� = 10.15

� = 4.09

f = 187.5 Hz
Increasing vibration amplitude

� =
4�2f2�

g



The influence of increasing amplitude

�2 = [gk +
�

�
k3] tanhhk

f = 187.5 Hz

� � 0.28 cm
v � 39.2 cm/s

�F

Tibet 1, water,

Faraday waves Faraday waves Faraday waves Drop ejection

� = 1.84 � = 2.73 � = 10.15 � = 16.25



The influence of increasing amplitude f = 187.5 HzTibet 1, water,

Faraday waves Faraday waves Faraday waves Drop ejection

� = 1.84 � = 2.73 � = 10.15 � = 16.25

�F

�F � 0.36 cm



The influence of increasing amplitude f = 187.5 HzTibet 1, water,

Faraday waves Faraday waves Faraday waves Drop ejection

� = 1.84 � = 2.73 � = 10.15 � = 16.25

�F � 0.36 cm



The influence of increasing amplitude f = 187.5 HzTibet 1, water,

Faraday waves Faraday waves Faraday waves Drop ejection

� = 1.84 � = 2.73 � = 10.15 � = 16.25
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Faraday waves

Tibet 2 
(2,0)

Tibet 1 
(2,0)

Tibet 3 
(2,0)

Tibet 4 
(2,0)

Tibet 2 
(3,0)

Glasses 
(2,0)

Distilled water
Silicone oil v=1cSt

No waves

�
�

�
�

�

�1/3

� f5/3

Thresholds for Faraday waves

�F = 24/3(�/�)1/3� �5/3
0 Kumar & Tuckerman (1994)•  consistent with 



Droplet generation via vibration

•  at sufficiently high forcing accelerations, Faraday waves break 



Interfacial fracture 

g + Γ cos ωt

σ

λF

Fracture criterion 

m

Use dispersion relation for deep water capillary waves:

ω =

(

σ

ρ

)1/2

k3/2 i.e. λF ∼

σ

ρ
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Tibet 2 
(2,0)

Tibet 1 
(2,0)

Tibet 3 
(2,0)

Tibet 4 
(2,0)

Tibet 2 
(3,0)
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(2,0)

Faraday waves 
+ 

Jumping droplets

Faraday waves

Distilled water
Silicone oil v=1cSt

�
� �

�

�1/3
� f4/3

Thresholds for drop ejection

�d � 0.26(�/�)1/3�4/3•  consistent with  Goodrich et al. (1996, 97, 99)



Distilled water

Silicone oil v=1cSt

Droplet size distribution

•  droplet size consistent with Faraday wavelengths: 

dm = B(�/�)1/3��2/3 Puthenveethil et al. (2009) 

Tibet 2 
(2,0)

Tibet 1 
(2,0)

Tibet 3 
(2,0)

Tibet 4 
(2,0)

Tibet 2 
(3,0)

Glasses 
(2,0)



What about levitation?  



� = 10 cSt
f = 188 Hz

1 mm

Levitating drops in the Tibetan singing bowl 

time



� = 10 cSt
f = 188 Hz

1 mm

Levitating drops in the Tibetan singing bowl 



Levitating drops in the Tibetan singing bowl 

� = 10 cSt
f = 188 Hz

1 mm



Can droplets walk in the singing bowl?  

Faraday 
waves

just below 
Faraday 

thresholdcoalescence 
zone

•  amenability to walking depends on position 

•  region just below Faraday threshold limited to 4 circular arcs 

NODE

NODE

NODE

NODE



Conclusions

•  have characterized the acoustics, hydrodynamics of the Tibetan singing bowl

•  Faraday waves break, releasing droplets onto the surface
          

•  vibrational modes excite Faraday waves at its edge 

•  droplets may bounce (but not walk) on the field of Faraday waves
          

•  Tibetan singing bowls: good for levitation, bad for quantum analogs
          



-  Tolstoy, War and Peace

`  And he showed Pierre a globe, a living wavering ball of no dimensions, its surface
consisting of drops tightly packed together. The drops moved and shifted, now merging from 
several into one, now dividing from one into many. Each drop strove to spread and take up the 
most space, but the others, striving to do the same, pressed against it, sometimes destroying, 
sometimes merging.”

 “This is life”, said the old teacher. “In the center is God, and each drop strives to expand in 
order to reflect Him in the greatest measure. It grows, merges and shrinks, is obliterated on the 
surface, vanishes into the depths, then resurfaces.”  ’



         Half   time



    Part II  The fluid trampoline: 
droplets bouncing on a soap film

Department of Mathematics, MIT
Tristan Gilet

University of Liege
                   

John W. M. Bush



 Inspiration: walking droplets
     on a vibrating bath

•  Couder’s wave-particle duality

We here examine drops on a soap film, for which 
bouncing states can be characterized exactly.

This will turn out to be the simplest fluid mechanical 
chaotic oscillator yet explored.

describe flow in drop, bath 
and intervening air layer

Video courtesy of Suzie Protiere

 on the macroscopic scale

•  modeling difficulties: must 

A simple variant



A brief (and woefully incomplete) history of Chaos:

•  Ed Lorenz (EAPS, MIT): Deterministic non-periodic flow (1963)

•  the Howard-Malkus water wheel, a mechanical analogue of 
the Lorenz system,  developed in Applied Math Lab

•  Feigenbaum (1978) predicted chaos in 1D iterative maps, transition to
chaos via period-doubling cascades (governed by Feigenbaum numbers)

•  period-doubling transitions to chaos reported in various systems:
- thermal convection (Libchaber 1980, Gollub & Swinney 1981)
- the dripping faucet (Shaw, 1981)
- an elastic ball bouncing on an oscillating substrate (Tufillaro et al. 1992)

... the fluid trampoline ........ and now....

•  Henri Poincaré  (1903): discovered chaos in exploring celestial mechanics



Γ = BΩ
2Acceleration:Key parameter:

•  drop radius: R = 0.8 mm; frame radius A = 8 mm
•  fluid is glycerine, water, Dove: viscosity 2 cS, surface tension 22 dynes/cm

We =

ρU2R

σ

II. Driven filmI. Stationary film



Surface tension: σ =
3πm

8T 2
=  22 dynes/cm

Inference of  surface tension from drop oscillations:



Impact 
•  falling water droplets strike a horizontal soap film

BOUNCES PASSES THROUGH



Other 
possibilities: 
partial coalescence
in various guises



We =

ρU2R

σ



Impact model

Film shape

•  quasistatic: valid since impact speed (~20 cm/s) much less than capillary

cap

catenoid

•  air layer communicates stress from film to drop

wave speed on soap film (~3m/s)

spherical cap & catenoid

•  can deduce force on drop from film shape
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Soap film model

•  experiments versus theory

film shape

motion of center
    of mass
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Breakthrough criterion
Drop kinetic energy  >  Surface energy at breakthrough

2π

3
ρR3U2 > 2σ∆Sm(β) We∗ =

3∆Sm(β)

πR2

β =
film radius

drop radius
= 10
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Energy lost per bouncing cycle We =

ρU2R

σ

Work done by film during impact ∼ ρ U3τc



Equation of motion for impact on a stationary film

gravity spring dissipation

•  form of dissipation suggested by experiment:   

D = 8 × 10
−5 kg/m

• spring acts only during impact with constant

•  dissipation constant prescribed by experiment

∆We ∼ We
3/2

mZ̈ = mg − kZH(Z) − DH(Z)Ż|Ż|

k =
8π

7
σ



Bouncing on a stationary film  

• KE lost with each successive impact    

mZ̈ = mg − kZH(Z) − DH(Z)Ż|Ż|

0 0.2 0.4 0.6 0.8 1
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5
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15
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−Z
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DROPS BOUNCING ON A DRIVEN FILM

•  drops may be sustained indefinitely on the film, bounce periodically or chaotically

frequency  f

 amplitude B



Bouncing criterion
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C

Mixed 
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natural frequency 
      of film

Γc =
4π2Bf2

g



A bouncing state (m, n) bounces n times in m forcing periods.

i.e. one period of the trajectory corresponds to m 
      forcing periods and n bounces of the droplet

The zoology of the bouncing states: nomenclature

(1,1) (2,1) (3,1)

(3,3)



Multiple simple periodic modes  at f = 33 Hz , Γ = 0.6 g

Transient

(1,1)

(2,1)

(3,1)

(1,1)

We = 0.06

We = 1.5

We = 3.9



mZ̈ = mg − kZH(−Z) − DH(Z)Ż|Ż|− mgΓ cos(Ωt + φ)

gravity spring dissipation forcing

•  2nd order equation rendered non-autonomous by the forcing

•  form of dissipation suggested by experiment:   

D = 8 × 10
−5 kg/m

• spring acts only during impact with constant

•  dissipation constant prescribed by experiment

∆We ∼ We
3/2

k =
24π

25
σ

Equation of motion of a droplet on a driven film



Equation of motion

mZ̈ = mg − kZH(−Z) − DH(Z)Ż|Ż|− mgΓ cos(Ωt + φ)

•  recast as a system of three first order autonomous equations

Introduce nondimensional variables

y =
−kZ

mg
; τ =

√

k

m
t; V 2 =

kU2

mg2
; Ψ =

Dg

k
; ω = Ω

√

m

k

Nondimensional governing equation

ÿ + H(−y)y + 1 = −H(−y)Ψ|ẏ|ẏ + Γ cos(ωτ + φ)

•  solve subject to initial conditions y(0) = 0 , ẏ(0) = −V at impact



Dynamical system

• integrate system with a variety of initial conditions:

Choose variables 

•  similar to the Duffing equations, as describe 2 classic chaotic oscillators

dy
dτ

= ẏ

dẏ
dτ

= −1 − H(−y)[y + Ψ|ẏ|ẏ] + Γ cos θ

dθ
dτ

= ω

θ(τ) = mod(ωτ + φ, 2π)y(τ), ẏ(τ) and

•  the inelastic bouncing ball (Mehta & Luck 1990)

•  the parametrically forced pendulum (McLaughlin 1981)

(y, ẏ, θ) = (0,−V, φ)
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A 2D iterative map

•  solutions may be displayed on a Poincare section made at impact:

•  system integrated numerically from one impact to the next for various 

•  define a 2D iterative map: 

•  net energy gained by the drop during the i th bounce depends on               :

(y, ẏ, θ) = (0,−V, φ)

initial conditions (V, φ)

Vi+1 = f(Vi, φi)
φi+1 = g(Vi, φi)

∆E = (V 2
i+1 − V 2

i )/2

(Vi, φ)



Lyapunov 
exponent: -0.055 

Periodic mode (2,1)  at  

Limit cycle
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Complex periodic and aperiodic modes

Period-doubling transition from mode (1,1) to (2,2): 

Periodic mode (3,3) at 

Chaotic solution at

f = 33 Hz , Γ = 0.7 g

f = 33 Hz , Γ = 1.2 g

f = 33 Hz , Γ = 1.1 g

Recall: a state (m, n) bounces n times in m forcing periods
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Poincare section of a chaotic solution Γ = 1.82
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The bifurcation diagram
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Feigenbaum numbers

δi =
Γi+1 − Γi

Γi+2 − Γi+1

•  period doubling at        values:  1.361, 1.631, 1.6679, 1.67244, 1.67319,       
1.673349, 1.673380,...

Γ

•  the first terms of the      suite:   δ

•  converging to the Feigenbaum number, 4.6692... ?  

•  ... and the Golden Mean?  
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CONCLUSIONS

•  have deduced break-through criterion for drop striking a soap film

•  in the bouncing regime, the soap film behaves like a linear spring

•  simple We-dependence of coefficient of restitution allows for accurate    

•  bouncing dynamics described (nearly!) exactly by a 2nd order ODE

•  simple model captures simple periodic modes quantitatively, complex

   among the simplest chaotic fluid systems yet explored

model of dissipation

periodic and chaotic modes qualitatively

BIG PICTURE

•  bifurcation diagram reveals period-doubling transitions to Chaos

  first step towards modeling bouncing drops



Biological application ? 

Postulate:   every problem you work on has a biological application

                                  Even here?



Biological application 

Doc Edgerton’s “Flying fish”



On the escape strategies of flying fish 

Lift force: where

U

z

•  if it swims through a periodic wave field at uniform speed, its dynamics

will be precisely analogous to that of a drop on a driven film

•  a chaotic trajectory would surely assist its escape

PREDATOR

k ∼ ρ U2wF = kz H(z)


