18.S996 Hydrodynamic quantum analogs

Lecture 12: The stroboscopic model



The stroboscopic model
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e the droplet generates and explores its wave field



e strobe at the wave (and bouncing) frequency, 50 Hz

e fast bouncing dynamics filtered out

e drop appears to glide above the surface

® drop accompanied by a monochromatic wave field



e strobe at the wave (and bouncing) frequency, 50 Hz

e fast bouncing dynamics filtered out

e drop appears to surf along the surface



e resonance condition: drop bounces at Faraday frequency

e resonance allows for a drastic simplification in the modeling



Trajectory equation
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¢ strobe the system once per bounce cycle

e conceals the vertical dynamics responsible for the guiding wave

e drop appears to surf on the interface, dressed by a quasi-monochromatic pilot-
wave field that is stationary in the drop’s frame of reference




Standing waves generated by the walker
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h(x,t) = AJy (kr |x —%x,]|) €

X, : drop position y. forcing acceleration

A: amplitude of single wave
kr: Faraday wavenumber

J,: Bessel function of first kind

yr: Faraday threshold
T’ : bouncing period

T ;: decay time of surface waves



: Oza, Rosales & Bush (2013
The stroboscopic model s, Rosales & Bush (2013)

mXy + Dx, = —mgVh(xp, )
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Approximate discrete sum as integral:
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- integral-differential equation describes horizontal motion in the strobed frame




Walking states
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v=20 ¢S f=80Hz

Predicted walking speeds
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e discontinuities associated with transition to more energetic walking state:
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Me =0.1099

e the walker surfs on its pilot wave, moving down the wave, faster as Me increases

0.0
&
0 00
-1 0
2 -0.(
3 -0.C
4 -0.(
-4 3 2 -1 0 2 3 4
X/
0.16
0.14+ Me =0.1924

y/o

1 0.05
.-
0
. - 0
1 —
B —
2 — 0.05
e
-3 —
L —— 0.1
-4 —
4 3 2 4 0 3 4
x/xF
0.16
0.14f Me = 0.7695




Energetics of the stroboscopic model Durey & Bush (202X)

What are the relative magnitudes of drop KE, drop GPE and wave energy?

Trajectory: mi, +Dx, =-mgVh(xp,t)+ F
A g (1
Wave field: h(z,t) = ﬁf H(|lx—-xp(s)])e (1=9)Tm {4

Wave kernel:  Z(r) bounded, quasi-monochromatic, #(0) =
Wave amplitude beneath walker, H(?) = h(xp,t), and bouncer Hp = ATn /TF

Chainrule: H = Oth(xp,t) +Tp - Vh(Tp, 1)
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where yp(v) =1- %2 and the drop speed limit ¢ = ymgA/DTy.




Energetics of the stroboscopic model

: mgA _ H

Work equation:  Ep, = yo(lZ,]) — =
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Drop energy: E, = Emld"plz +V(xp) + mgH where F =-VV(x,)
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Steady state: o= Yp(v) =1 — — | relates drop GPE to KE
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Wave energy: E(t)=[[ %hz(m,t) dm+/] %|Vh|2da:

For a nearly monochromatic wave field, Matt Durey has shown

dE  2Egx(H(1) E(2)
dr T Ty ( Hy  Eg )

Steady state:

Hpg Ep c? | relates wave energy, GPE, KE




The stroboscopic model: advantages

- a significant simplification relative to full model of Molacek

- continuous rather than discrete

- allows for analysis of stability of bouncing and walking states

- allows for analysis of stability of orbital motion in rotating frame, in SHO
and spin states (at low Me)

- allows for characterization of transitions to chaos in rotating frame,
SHO and Coulomb potentials

- allows for analysis of interacting droplets, provided they are in resonance



The stroboscopic model: shortcomings
- only applies in situations where bouncing phase 1s constant
- bouncing phase variations may be induced by wave fields associated with:
1) neighboring droplets (both fransient and standing waves)

2) standing waves associated with deep regions (above Faraday threshold)

3) the droplet’s own history in closed domains

Promenading
pairs

Orbiting pairs



A flagrantly non-resonant orbiting pair




Static bound states

e multiple droplets bounce in resonance, but instability may break resonance







Ratcheting pairs (Eddi et al. 2010, Galeano Rios et al. 2018)
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The interaction of many walkers



A walker traverses a standing Faraday wave field

Strobed motion
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Walker loses resonance owing to interaction with standing waves

~ dynamics cannot be captured by the stroboscopic model



Two walkers in a corral above threshold

. bouncing phase variations induced by background wave field and partner
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Walker in a corral

- explores its own pilot-wave field

- variations of bouncing phase
induced by its pilot-wave field

- dynamics, statistics not captured by
the stroboscopic model
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Current state of the art (see Bauyrzhan)

¢ vertical dynamics, non-resonance effects important at high Me, in confinement

Vertical dynamics: Z,=Fy(t)—Bo

P

Horizontal dynamics:

X, + (2,Fy(0)+ D)X, = — Fy() Vh

Normal force: Fy(r) = — %(—zp + 7, + h)[@v(z'p — 2y — h) + ‘ng(zp —z,— h)]

Linear drag Surface tension:
linear spring




