
 

        18.S996 Hydrodynamic quantum analogs

           Lecture 12:  The stroboscopic model



The stroboscopic model



A droplet walking in a circular corral

• the droplet generates and explores its wave field



•  strobe at the wave (and bouncing) frequency, 50 Hz

A droplet hovering in a circular corral

•  fast bouncing dynamics filtered out

•  drop appears to glide above the surface

•  drop accompanied by a monochromatic wave field



•  strobe at the wave (and bouncing) frequency, 50 Hz

A droplet surfing in a circular corral

•  fast bouncing dynamics filtered out

•  drop appears to surf along the surface



The walker with vertical dynamics resolved

•  resonance condition: drop bounces at Faraday frequency

•  resonance allows for a drastic simplification in the modeling 

average out the vertical dynamics



ΦI

Trajectory equation

Drag coefficient:

Wave field:

Wave amplitude:

Memory parameter: Impact phase:

Ohnesorge number:Bond number:



Strobed pilot-wave dynamics

•  drop appears to surf on the interface, dressed by a quasi-monochromatic pilot- 
    wave field that is stationary in the drop’s frame of reference

•  strobe the system once per bounce cycle       

•  conceals the vertical dynamics responsible for the guiding wave    



Standing waves generated by the walker

Wavelength λF

Decay time TFMe

xp : drop position

A: amplitude of single wave

kF: Faraday wavenumber

J0: Bessel function of first kind

γ:  forcing acceleration

γF : Faraday threshold

TF : bouncing period

Td: decay time of surface waves


Memory parameter



The stroboscopic model

Approximate discrete sum as integral:

Oza, Rosales & Bush (2013)

 MEMORY TERM

Valid for high-frequency bouncing:

 MEMORY TERM

integral-differential equation describes horizontal motion in the strobed frame
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MEMORY FORCE

Seek steady walking solution :

Walking threshold :

xp = u t

Walking states

 use best fit for bouncing phase parameter



Predicted walking speeds
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•   discontinuities associated with transition to more energetic walking state:
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Pilot-wave field of walking droplets 
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•  the walker surfs on its pilot wave, moving down the wave, faster as Me increases



Energetics of the stroboscopic model

Wave kernel:                        bounded, quasi-monochromatic,                      

 Wave amplitude beneath walker,                             , and bouncer                     

Wave field:                        

Trajectory:                        

Sub into trajectory eqn:                        

Chain rule:                        

What are the relative magnitudes of drop KE, drop GPE and wave energy?                     

where and the drop speed limit

Durey & Bush (202X)



Energetics of the stroboscopic model

 For a nearly monochromatic wave field,  Matt Durey has shown                     

Wave energy:                        

Drop energy:                        

Work equation:        

where                     

Steady state:                        
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c2 relates wave energy, GPE, KE                     



The stroboscopic model:  advantages

 allows for analysis of stability of bouncing and walking states 

allows for analysis of stability of orbital motion in rotating frame, in SHO
    and spin states (at low Me)

allows for characterization of transitions to chaos in rotating frame, 
SHO and Coulomb potentials

 a significant simplification relative to full model of Molacek 

allows for analysis of interacting droplets, provided they are in resonance

continuous rather than discrete



The stroboscopic model: shortcomings
 only applies in situations where bouncing phase is constant 

 bouncing phase variations may be induced by wave fields associated with:

1) neighboring droplets (both transient and standing waves)

3) the droplet’s own history in closed domains

Orbiting pairs

Promenading 
pairs

2) standing waves associated with deep regions (above Faraday threshold)



A flagrantly non-resonant orbiting pair



Static bound states 

• multiple droplets bounce in resonance, but instability may break resonance 





Ratcheting pairs   (Eddi et al. 2010, Galeano Rios et al. 2018)

• observed behavior not well captured by strobe models (Oza et al. 2017)

• indicates importance of phase variation and transient waves on stability

• unequal pairs self propel by virtue of the asymmetry in their wave fields



The interaction of many walkers



Strobed motion

Experiment

Experiment

λF

A walker traverses a standing Faraday wave field



Walker loses resonance owing to interaction with standing waves

 dynamics cannot be captured by the stroboscopic model



Two walkers in a corral above threshold

 bouncing phase variations induced by background wave field and partner 



Walker in a corral

 explores its own pilot-wave field

 variations of bouncing phase 
induced by its pilot-wave field 

Phase variations

 dynamics, statistics not captured by 
the stroboscopic model 



Current state of the art           (see Bauyrzhan)

Experiment

··zp = FN(τ) − Bo

··xp + (𝒟hFN(τ) + 𝒟a) ·xp = − FN(τ)∇h

FN(τ) = − ℋ(−zp + zb + h)[𝒟v( ·zp − ·zb − ·h) + 𝒞v(zp − zb − h)]

•   vertical dynamics, non-resonance effects important at high Me, in confinement

Vertical dynamics: 

Horizontal dynamics: 

Normal force: 
Surface tension:	
linear spring

Linear drag


