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Can we rationalize these curves?



• The PhD thesis of Jan Molacek

 an integration of experiment and mathematical modeling 

 developed theoretical description of bouncing, walking drops 

 rationalized the regime diagrams of bouncing modes 

 developed a model for the standing waves created by impact 

 rationalized extent of walking regimes, predict walking speeds 

 developed a trajectory equation for the walking droplets 

 provided the basis for the stroboscopic model of Anand Oza



         Refined experimental apparatus
•  precise control of bath vibration and drop size

         Harris & Bush (2015),  Harris, Liu & Bush (2015)

         Piezo-electric drop generator

•  influence of ambient air currents eliminated



Regime diagrams 50 cS 60 Hz 

 
  extended range of drop sizes, fluid viscosities, driving frequencies



Dimensional analysis and pilot-wave triggers   
                          

   If there are two physical constants in the Universe,       and      , 
what is the natural frequency of oscillation of a drop of radius     ?
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•  highlighted the importance of the Vibration Number:

The dynamics of bouncing and walking drops

•  rationalized dependence of droplet dynamics on system parameters 

Bouncing states: nomenclature

Molacek & Bush (2013ab)

A bouncing state (m, n)  bounces n times in m forcing periods.

i.e. one period of the trajectory corresponds to m forcing periods and n bounces

•  to distinguish between degeneracy of bouncing states, use superscripts:    (m,n) i

Energy of  (m,n)   <  Energy of  (m,n)    < ..... etc.1 2

Ω =
2πf

(σ/ρR3
0
)1/2

=
forcing frequency

drop’s natural frequency

•  developed quasi-static impact model: drop and interface take quasi-static forms



Bouncing modes

driving Γ 
increases

In (m, n) mode, a drop bounces n times in m forcing periods.

local forcing at frequency 
of most unstable Faraday 
waves — may destabilize
into walkers

ν = 50cS, f = 50Hz

12
•  mechanical energy of

(m, n)   >   (m, n)
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In (m, n) mode, a drop bounces n times in m forcing periods.



Bouncing Modes in 20cS, 80 Hz
Chao%c	bouncing	(a040)

Bouncing	(2,2)	(a038)

Bouncing	(4,2)	(a059)

Bouncing	(2,1)^1	and	(2,1)^2	(a058	and	a051)



Ω = 2πf(ρR3

0/σ)1/2

Regime diagram

In (m, n) mode, a drop bounces n times in m forcing periods.

Molacek & Bush (2013ab)
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•  drops most readily bounce, walk when forced at their natural frequency



Bouncing droplets

•   except at the highest memory, can neglect influence of wave field      

•   assume surface recovers during a bounce, reverts to a flat surface



Notation



The coupling of drop and bath  

ρ
∂φ

∂t
+

1

2
ρ u

2 + σ∇ · n + (g + Γ cos ωt)ζ = − ps

ps(x, t) ∼ cos ωt/2

ρ, ν

σ
g + Γ cos ωt

n

h

ζ

Bernoulli at free surface:

where drop applies                                             at Faraday frequency

Force on drop: T = −p I + 2µ Ewhere

•  lubrication layer communicates         between droplet and bath, and       

Drop trajectory: free flight plus impact

applies tangential viscous force

Normal force during impact: 

F =

∫
S

T · n̂ dS

ps

Sc
n̂

Fn =

∫
Sc

−ps n̂ dS



INERTIA CURVATURE HYDROSTATIC

Fn = −

∫
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Scaling

We =
INERTIA

CURVATURE
∼

ρu2/2

σ/a
∼ 0.3

Bo =
HYDROSTATIC

CURVATURE
∼

ρΓζ

σ/a
∼ 0.1Bond number:

Note: (Bo,We) ! 1in limit of                              ,  curvature pressure dominates 

g + Γ cos ωt



Droplets bouncing on a vibrating soap film Gilet & Bush (2009ab)

•  quasi-static interface: consists of spherical cap plus catenoid

mZ̈ = mg − kZH(−Z) − DH(−Z)Ż|Ż|− mgΓ cos(Ωt + φ)

catenoid

cap

•  interface behaves like linear spring with spring constant  

•  form of dissipation indicated by experiment   

DISSIPATIONSPRING

•  adequately described all bouncing states observed on a driven soap film   

k ∼ σ

DRIVING



Linear Spring Model

   drop 
acceleration

 gravity in 
bath frame of reference

Surface tension: 
linear spring

Drag 
proportional 
to speed

Heaviside function: 
surface only acts  
during contact

•  follow Gilet & Bush’s modeling of the interface as a linear spring  

where  C, D are constants deduced by matching data for 

•   assume interface, drop both recover between impacts, air drag negligible

TC , CR(We)



Contact time
  roughly constant, independent of impact speed for relevant parameters

•

Stationary bath:

Vibrating bath:

20 cS 
(vibrating bath)

50 cS 
(vibrating bath)

50 cS 
(still bath)

20 cS 
(still bath)



Normal Coefficient of Restitution

20 cS 
(still bath)

20 cS 
(vibrating bath)

50 cS 
(still bath)

50 cS 
(vibrating bath)
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Linear spring model captures bouncing modes

Lower energy Higher energy

•  in the (m, n) modes, the drop bounces n times in m driving periods

•  multiple (m, n) modes may coexist: differentiated with superscript

•  mechanical energy of

(m, n)   >   (m, n)12



• 40Hz • 50Hz

• 80Hz • 150Hz

 Coalescence threshold

 coalescence  coalescence

 coalescence

Ω = 2πf(ρR3

0/σ)1/2Vibration number: useful in data collapse

bounce bounce



Bouncing thresholds

 Bouncing 
(1,1) mode

Coalescence
Coalescence

•  critical                below which drops coalesce, above which they bounce   



Bouncing thresholds

 Bouncing 
(1,1) mode

 Bouncing 
(1,1) mode

Coalescence Coalescence

Ω = 2πf(ρR3

0/σ)1/2Vibration number:

•  critical                below which drops coalesce, above which they bounce   

useful in data collapse



Period-doubling transitions
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Bouncing threshold discontinuous
• 40Hz
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•

 Approach to coalescence from (1,1)  state
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•

 Approach to coalescence from (1,1)  state2

(1,1)2



Ω = 2πf(ρR3

0/σ)1/2

Regime diagram:   predictions of linear spring
Molacek & Bush (2013a)

(20cS, 80Hz)



Ω = 2πf(ρR3

0/σ)1/2

•  predicted on the basis of the linear spring model for the interface

Contact time

Molacek & Bush (2012a)

(20cS, 80Hz)





Logarithmic Spring Model

•  developed to address perceived shortcomings in linear spring model 

•  spring softer for smaller deformations 

•  Z denotes penetration depth, and

logarithmic 
spring

nonlinear draginternal fluid 
motion

gravity in bath frame of 
reference



mz̈ = − mg∗(t)

g∗(t) = g + γ sin(2πft)

c1, c2(ν), c3

Logarithmic spring

where 

Free flight: 

Impact: 

(

1 +
c3

ln2 | c1R0

Z
|

)

mz̈ +
4

3

πµR0c2 (ν)

ln | c1R0

Z
|

Ż +
2πσZ

ln | c1R0

Z
|

= − mg∗(t)

DRAG LOGARITHMIC
      SPRING

ADDED
 MASS

GRAVITY

is the effective gravity 

are constants deduced by matching data for 

•   assume interface recovers between impacts: allows for characterization 
     of low energy bouncing states

•   assume both bath and drop take
     quasi-static forms

•   incorporate effects of fluid inertia

TC , CR(We)

Molacek & Bush (2013)



Penetration depth

Linear  
spring

  evolution well described by linear spring, slightly better by log spring

Log spring



Drop acceleration 

Linear  
spring

  linear and log spring yield slightly different results

Log spring

  acceleration of drop center of mass:  



Logarithmic Spring Model: Predictions

20 cS 
(still bath)

20 cS 
(vibrating bath)
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Ω = 2πf(ρR3

0/σ)1/2

Molacek & Bush (2013a)

Regime diagrams:   
       f = 80Hz

•  model captures bouncing   
threshold, period-doubling
transitions



Phase of impact

Note:   bath displacement in lab frame 

Bath transfers maximal energy at

More energetic bouncing states near



Phase of impact

Note:   bath displacement in lab frame 

Bath transfers maximal energy at

More energetic bouncing states near



Phase of impact

Note:   bath displacement in lab frame 

Bath transfers maximal energy at

More energetic bouncing states near



Linear versus logarithmic spring models

•   both models assume bath restored to flat before next impact

•   linear spring captures bouncing threshold, first period-doubling transitions

•   linear spring does not capture behavior arising at high memory

•   linear spring’s shortcomings at high Me motivated development of log spring

•   these shortcomings later found to be attributable to wave persistence

•   current theoretical models have reverted to the linear spring

-  Couchman et al., JFM (2019 Couchman & Bush, JFM (2020)



Half-time



Walking dynamics

•  requires consideration of horizontal drop dynamics, wave dynamics       



Walking dynamics

time

height

contact contact

flight

bath

surface

•  drop lands on front of wave, thus receiving a horizontal kick        

•  time of flight plus contact time equals Faraday period        

•  walking arises when the drop’s period matches that of its Faraday waves       

•  requires resonance between drop and wave        



Model for bouncers describes interaction between drop and a quiescent bath. 

To describe walkers, we also need to understand: 

•  spatio-temporal profile of the standing waves created by drop impacts 

•  forces acting on the drop in the tangential direction: drag & kick

Walking dynamics



Couder’s model

Wave forms

Eddi et al. JFM (2011)

Subsequently: 

Initially: 

inertia wave drag

where coefficients satisfy viscous Matthieu eqn 



Disturbance of forced and unforced interfaces

•  withdraw millimetric needle from interface

Vibrational forcingNo forcing

•  field of Faraday waves persist •  waves quickly disperse 

•  vibration predisposes bath to monochromatic wave field with Faraday wavelength



Wave field from a single impact

Hankel transform:

Nondimensionalization:

Gravitational potential energy:

Surface potential energy:

Pressure potential energy:

Plancherel Theorem:  for functions f(r), g(r) and their Hankel transforms F(k), G(k)



Wave field from a single impact

Potential flow:

Gravitational potential energy:

Surface potential energy:

Pressure potential energy:

General solution decaying as               :

Kinematic BC at surface:

Velocity potential:



Wave field from a single impact

Euler-Lagrange equation with dissipation:

Bath kinetic energy:

Dissipation in bath:

where the Lagrangian:

Substitution:

Use and 



Point force approximation: use small argument expansion

Wave field from a single impact

Equation for Hankel transform H(k):

where

Equation for Hankel transform H(k):

dissipation surface 
energy

gravitational 
energy

forcing by 
the drop



Standing wave field
Hankel transform:

Equation for H(k):

Solve

Alternatively,

where
Transform back:



•  standing wave created by a single drop impact:

approximation

full numerical soln

Standing wave field

•  most unstable mode                    where



Drag suffered at impact

out

in
TV

VT

•  infer horizontal drag imparted at impact via experiment

Tangential coefficient of restitution



Horizontal drag over impact

FT

FN

v

v

v
T

N

tangential  reaction 
force (drag)

normal  reaction 
force

tangential Weber 
number

20 cS

50 cS

out

in
TV

VT

•  infer horizontal drag imparted at impact via experiment



Model summary

contact drag air drag sloped 
interface

Vertical dynamics

Standing wave evolution

Horizontal dynamics



ΦI

Trajectory equation: resonant walker

Drag coefficient:

Wave field:

Wave amplitude:

Memory parameter: Impact phase:

Ohnesorge number:Bond number:



Walking threshold

Speed satisfies: 

Seek walking solution with steady speed v:

where                                      

Use to deduce 

Critical 
memory for
walking:  



Predicted walking thresholds

•   the model prescribes the extent of walking region

90 Hz

80 Hz

60 Hz

60 Hz

50 Hz

20 cS 50 cS



Measured walking thresholds

90 Hz

80 Hz

60 Hz

60 Hz

50 Hz

20 cS 50 cS



Predicted walking thresholds

•   the model prescribes the extent of walking region

90 Hz

80 Hz

60 Hz

60 Hz
50 Hz



 Walking speed dependence:  experiment  



Predicted walking speeds

R=0.31 mm R=0.31 
mm

R=0.35 
mm

R=0.38 
mm

R=0.40 
mm

R=0.51 
mm

R=0.39 
mm

R=0.34 
mm

(2,1)

(2,1)

2

1

•   discontinuities associated with transition to more energetic walking state:

(2,1)                 (2,1) 21



Walking speed predictions
Walking speed [mm/s] depends on driving and drop size. 
Mode switchings clearly visible in discontinuities. 

20 cS 
80 Hz

50 cS 
50 Hz

(2,1)

(2,1) (2,1)

(2,1)

Chaos

1
1

22



Contact time

Depends strongly on bouncing mode, minimal in the (2,1) 2



can trace evolution of vertical dynamics from bouncing to walking

•

 Regime diagram



•

 Regime diagram

 can trace evolution of vertical dynamics from bouncing to walking



•

vertical dynamics in the period-doubled bouncing state

 Regime diagram



•

vertical dynamics depends on both driving acceleration

 Regime diagram



•

vertical dynamics of the low energy walking state

 Regime diagram
(2,1)1



•

vertical dynamics of the high energy walking state

 Regime diagram
(2,1)2



Regime diagram 20 cS silicone oil, 80Hz

•  predicted on the basis of the nonlinear spring model for the interface

Molacek & Bush (2012b)



Predicted regime diagrams

20 cS, 80 Hz Ω = 2πf(ρR3

0/σ)1/2




