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depend critically on the quasi-monochromatic wave field

the drop navigates the local, self-generated potential that is its pilot wave field

quantized orbits emerge from the dynamic constraint imposed on the
droplet by its quasi-monochromatic wave field

chaotic pilot-wave dynamics: intermittent switching between weakly unstable
periodic orbits yields multimodal, quantum-like statistics

speed fluctuations lead to correlation between position and speed, a statistical
signature with the Faraday wavelength

¢ random walk characterized by effective diffusivity

® cvokes Nelson’s Stochastic Mechanics:



e orbital quantization: Larmor levels, SHO

* spin states, Zeeman splitting, spin lattices, Anderson localization
 statistical projection (" mirage’) effects in confined geometries

e Friedel oscillations, corrals, interaction-free measurement

e tunneling, superradiant tunneling and emission

» single-particle diffraction and interference

e Uncertainty relations and Exclusion Principles

* boost factors, HOM effect, surreal trajectories, bomb testers
e optical effects: Talbot effect, Bragg scattering, optical ratcheting

e distant, two-particle and multi-particle correlations

e viscous damping of pilot wave: quantum features emerge at high memory

e drop inertia may dominate pilot-wave force



retain key features of walker system

(memory, resonance, quasi-monochromatic wave field)

explore beyond the range of the hydrodynamic system

discover new quantum-like features; e.g. stable spin states

extended to 3D, where helical spin states have now been found

connect to and inform quantum pilot-wave theories



(Bush, ARFM, 2015)

Classical pilot-wave dynamics: a parametric generalization
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CONTAINS ALL FLUID PARAMETERS:
PROXIMITY TO THRESHOLD BOUNDED IN HYDRODYNAMIC SYSTEM

0<I'<1 0.8 < kg < 1.6 inlab

Question: For what values of (lio, F) does the system look most like QM?

Eg.l When are hydrodynamic spin states stable?

Eg.2 When is walking state unstable to in-line oscillations?



Generalized pilot-wave theory: the free particle in 2D
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(Durey & Bush, 2020)
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* stable, wobbling and precessing spin states may obtain

e walking state may be unstable to in-line oscillations with wavelength Ap

e aperiodic jittering’ gives rise to random walk with diffusivity D ~ UAp



Generalized pilot-wave dynamics
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THRESHOLD

Question: For what values of (kg, ") does the system look most like QM?

Further generalizations

e consideration of alternative wave forms, spatio-temporal damping
(Durey, Chaos, 2020; Valani et al., PRE, 2021 )

e extend pilot-wave dynamics to three dimensions (3D spin states now found)

 include stochastic forcing, study hybrid pilot-wave stochastic dynamics

e connect to/inform quantum pilot-wave theories of Bohm and de Broglie
and their modern extensions



Schrodinger:

Madelung transformation (1928):

Continuity:

Quantum
Hamilton-Jacobi:

QUANTUM POTENTIAL Q

where is the probability density, is the action,

is the quantum velocity of probability,

1s the quantum probability flux.



e cquate quantum velocity of probability  and particle velocity

® solve Schrodinger’s equation for , from which 1s computed

® solve trajectory equation

NONLOCAL

¢ given initial conditions consistent with solution, it predicts emergent statistics
consistent with those of the standard quantum formalism

FiGure 1: An cnsemble of traj..cto‘l.,s or the two-slit expenmem meonn in the slits.
(adapted by Gernot Bauer from Philippidis, Dewdney, & Hiley 1979: 23. fig. 3)

¢ a counterexample of the Impossibility Proofs that held sway at the time



Surreal trajectories
- Englert, Sully, Siissman and Walther (ESSW). 1992

e proposed an interference experiment intended to expose ¢4) — Bckzzian esjestcy
the shortcomings of Bohmian mechanics — Trajectory anticipated by ESSW

‘Bohmian trajectories are at odds with common sense:

|
they are not real, they are surreal.’ |
M | 2 |
4

e their reasoning was criticized by Aharanov & Vaidman
(1996), who concluded:

" ESSW does not show that Bohmian mechanics is /8
inconsistent, only that Bohmian trajectories behave D
differently from what one would expect classically.’

[

e cxperimental investigations using “weak measurement’ found mean
trajectories consistent with the surreal trajectories (Mahler et al., 2016)

“We demonstrate that the trajectories seem surreal only if one ignores
their manifest nonlocality.’



('d) — Bohmian trajeciory

Real Surre al traj eCtorieS — Trajectory anticipated by ESSW

- Frumkin, Struyve, Darrow, JB AN
(PRA, 2022) |w : PR
V.
e arise in the walker system Ppo
at high memory y/4an

D2

e “surreal’ trajectories are not at odds with classical intuition informed by a
familiarity with pilot-wave hydrodynamics

¢ may be readily understood as a manifestation of non-Markovian pilot-wave
dynamics, with no need to invoke ~quantum nonlocality’



NewScientist
Seven wonders of the quantum world

From undead cats to particles popping up out of nowhere, from watched pots not boiling -
sometimes - to ghostly influences at a distance, quantum physics delights in demolishing ‘ D>
our intuitions about how the world works. Michael Brooks tours the quantum effects that |
are guaranteed to boggle our minds.

. - 2 2
L. Corpuscles and buckyballs M | B I
e —

2. The Hamler ejjecr |

I

|

3. Sornething for nothing (|
‘ 1|

I I

I I

I I

4. The Elitzur-Yaidman bomb tester I

|
5. Snocky action ar a distance Path 1 1}
6. The field that isn’t there -: - % ===
B -—-=--—> M1
7. S yv+f| er;’!._ 11 5 -."““H'III“\. Patll 2

¢ in absence of bomb, interference always causes photon to arrive at D1
e with bomb, particle either detonates bomb (Path 1) or arrives at D2 or D1

with equal probability

e if bomb 1s present 50% of the time, then you can detect it 25% of the time
via a particle that took Path 2, so never interacted with it



A hydrodynamic analog of the quantum Bomb tester
- Frumkin & JB, PRA (2023)

e submerged topography (orange) plays the role of the "bomb’

e in the absence of the bomb, all trajectories go to the left

¢ in the presence of the bomb, surreal trajectories may arise:

- the droplet’s pilot-wave interacts with the bomb, altering the droplet’s path

e 25% of the time, the droplet detects a bomb along a path it didn’t take



e cquate quantum velocity of probability  and particle velocity

® solve Schrodinger’s equation for , from which 1s computed

® solve trajectory equation

NONLOCAL

¢ Einstein’s objection: it is “nonlocal’ by virtue of the quantum potential Q

* no mechanism for wave generation; no feedback of particle on field

® invoke a stochastic forcing from a “sub quantum realm’:

e particles jostle about  like Brownian motion of gas molecules about streamlines
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e Frank Wilczek (The Lightness of Being,2008): ~a poem in two lines’...

Einstein-de Broglie relation:

Natural
frequency:

e de Broglie (1926) suggested microscopic particles have an internal clock at

that generates a wave that moves in concert with the particle

particles move in resonance with a guiding or "pilot’ wave field



“ A freely moving body follows a trajectory that is orthogonal
to the surfaces of an associated wave guide”.

- Louis de Broglie (1892-1987) j “\f

o 1s the probability wave, as prescribed by standard quantum theory

1s a real physical wave responsible for guiding the particle

according to his Guidance Equation:

® wave generated by internal particle vibration - i =

(Zitterbewegung) at the Compton frequency:

¢ a solution of Klein-Gordon equation triggered by oscillations in rest mass
¢ particle follows point of constant wave amplitude: his guidance equation yields

for a monochromatic wave

o : the particle oscillates in resonance with its guiding wave

® incomplete: wave generation mechanism, precise form of  not specified



de Broglie’s pilot-wave theory
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e no mechanism specified for pilot-wave generation

a dynamical reformulation of a statistical theory
particle 1s piloted by a wave form of unspecified origins

nonlocal: particle 1s guided by the non-local quantum potential

original double-solution theory distinguished between and
form of pilot-wave unspecified: several options considered
at one stage set : reduces to Bohmian mechanics

two theories conflated into “de Broglie-Bohm theory’



e workers 1n Stochastic Electrodynamics (SED) suggest an EM pilot wave

(de la Pena, Cetto, Valdes-Hernandes 2015)

e de Broglie suggested that the field satisfies the Klein-Gordon equation,

as describes the Higgs field and weak gravitational waves ...

What might de Broglie have tried ...
... had he had MATLAB?



Hydrodynamically-inspired quantum field theory
Dagan & Bush (2020)

e cxtend de Broglie’s mechanics, informed by pilot-wave hydrodynamics

... we can envisage a more active role for the particle, something which is not
even admitted as conceivable in the conventional view. This may, for instance,
enter as a ‘source’ of the pilot-wave field through an inhomogeneous term in the

wave equation...” — Holland (1995)

e model particle as wave source, an oscillation at twice the Compton frequency
Forced Klein-Gordon equation

Pre — c? Pzx + WCQ: ¢ = € sin(cht) 6_[(96_3”1?)/>‘C]2

‘particle’: a localized excitation
in the Higgs field

e consider the zero-particle-inertia, no-wave-damping limit

Coupling
e particle moves in response to gradients in wave amplitude “’“Tnt
Guidance equation: Y Ty = —Q —

ox



HQFT Durey & Bush (2020)

e above a critical coupling constant (., particle self propels

e deduced analytically the form of the 1D and 2D pilot-wave field by solving an IVP

e pilot wave and particle momentum related through: p = ymuv = hk
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e superposition of radially propagating waves with A and carrier wave with Ap
e markedly different from the horseshoe-like form of the walker wave field

e for v << c, the 2D pilot-wave field takes the form of a plane wave with Ap



Hydrodynamically-inspired quantum field theory 11

David Darrow & JB
e combine particle and field Lagrangians at the level of actions

S = Sfield + bparticle + Sinteraction
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Coupled wave and guidance equations HQFT II
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HQFT I Dagan & Bush (2020)
(0,0" + w2)p = — sin(2wet)5> (¢ — qp)
Yip = —aVe

1. Frame-dependent

2. Non-inertial dynamics
3. Forced oscillations at w.
4

No steady rectilinear state

HQFT 11
(80" +m?)p =~""b6"(q — qp)

L (mydp) = v 'bVe(gp)

Lorentz invariant
Inertial dynamics

1.
2.
3. Time independent
3

Emergent oscillations at w.




Slit diffraction with HQF'T 11

Single slit diffraction pattern Trajectories Trajectories inside slit
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e an amalgam of de Broglie’s pilot-wave theory and the walker system

— S. Goldstein, Bohmian Mechanics (Stanford Encyclopedia of Philosophy, 2021)



Nonnonlocality: misinferences of non-locality from local hereditary
pilot-wave dynamics Harris et al. (2013)

1. Wave function collapse

e act of observation causes instantaneous collapse
of statistical wave form

2. Spooky action at a distance 3. Real surreal trajectories

Harris et al. (2018) Sdenz et al. (2020)
Frumkin et al. (2022)
e wave-mediated forces play role of
non-local quantum potential in
Bohmian mechanics

e interaction with pillars and well:

wave-mediated local forces give rise
to apparently non-local lift forces



Bell Tests: the acid test of quantumness

e can be performed on any probabilistic system consisting of two subsystems
(1, 2) on which one measures a stochastic process with outcomes X = +1 or -1

S =|M(a,b)+M(a’,b)+M(a,b’)-M(a',b")| <2 V(a,ad,b,bd")
where M (a, 3) is the average product:

Mo, B) =< X1 X9 >4 5= Z X1 XoP(X,, Xo|a, B)
X1,X2

and P(X;,Xq|o, ) is the joint probability of (X, Xs)
when the left and right analyzers are set to (¢, f3).

( Photon )
- Photonic o coincidence |
Assumptlons Bell test (__counting )4—‘
. a
1. Realism Dot C]P 0,
2. Locality
. Beam splitting Sourcc of  Beam splitting
3. Measurement independence solariser | photons pairs _polariser 2

a=a,a =505



2-particle correlations: towards hydrodynamic Bell tests

h(x,t) \ Drop 1 L Drop 2
>

- Papatryfonos, Nachbin,
Labousse, Vervoort, JB
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Approach

e drops confined to a pair of wells across which they tunnel unpredictably
between the ground (preferred) state and the excited state

e identify +/- (excited/ground) states with inner/outer cavities
e identify well geometries with measurement settings
e cxplore various measurement settings, measure emergent statistics

e seck violations of Bell’s Inequality



Violating Bell’s Inequality: static Bell test
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¢ assumption of Measurement Independence not valid: the geometry of both
cavities influences the pilot wave, the probability of outcomes in both cavities...



Towards a dynamic Bell test - Nachbin (2022)

¢ use dynamic topography to isolate the two subsystems

e cxcited, correlated state survives topographically-induced isolation

e might the static Bell violations likewise survive dynamic changes in
measurement settings?  Might memory account for entanglement?



¢ provides a vehicle to explore the boundaries between classical and QM

e cxtends the range of classical systems to include features previously thought to be
exclusive to the microscopic, quantum realm

e provides a conceptual framework, a progressive approach, for understanding QM

Pilot-wave hydrodynamics demonstrates how classical hereditary mechanics
gives rise to behavior that is taken as evidence of non-locality in QM.

¢ is reminiscent of the de Broglie’s pilot-wave theory of quantum dynamics
e suggests the shortcomings of quantum pilot-wave theories of de Broglie and Bohm
® has motivated a new class of local theoretical models of quantum dynamics

e suggests that the quantum paradoxes may be resolved through the elucidation
of pilot-wave dynamics on the Compton scale



e at the time that pilot-wave theory was developed by de Broglie, there was no
macroscopic analog to draw upon.

Now there is.

J can give rise to quantum-like behaviour on the macroscale.

So why not the microscale?



