18.S996 Hydrodynamic quantum analogs

Lecture 1: Introduction

John W. M. Bush

Applied Math Lab Department of Mathematics, MIT

HALF-TIME

Three paradigms for macroscopic quantum behavior

- depend critically on the quasi-monochromatic wave field
- the drop navigates the local, self-generated potential that is its pilot wave field

I. Orbital pilot-wave dynamics

- quantized orbits emerge from the dynamic constraint imposed on the droplet by its quasi-monochromatic wave field
- chaotic pilot-wave dynamics: intermittent switching between weakly unstable periodic orbits yields multimodal, quantum-like statistics

II. In-line oscillations

• speed fluctuations lead to correlation between position and speed, a statistical signature with the Faraday wavelength

III. Stochastic motion over mean-pilot-wave potential

- random walk characterized by effective diffusivity $D \sim U_{\lambda_F}$
- evokes Nelson's Stochastic Mechanics:

$$D_Q \sim \frac{\hbar}{m} \sim \frac{\hbar k_B}{m k_B} \sim U \lambda_B$$

Hydrodynamic quantum analogs

- orbital quantization: Larmor levels, SHO
- spin states, Zeeman splitting, spin lattices, Anderson localization
- statistical projection (`mirage') effects in confined geometries
- Friedel oscillations, corrals, interaction-free measurement
- tunneling, superradiant tunneling and emission
- single-particle diffraction and interference
- Uncertainty relations and Exclusion Principles
- boost factors, HOM effect, surreal trajectories, bomb testers
- optical effects: Talbot effect, Bragg scattering, optical ratcheting
- distant, two-particle and multi-particle correlations

Most significant limitations

- viscous damping of pilot wave: quantum features emerge at high memory
- drop inertia may dominate pilot-wave force

A generalized pilot-wave framework

(Bush ARFM 2015, *Durey & Bush, 2020*)

• retain key features of walker system

(memory, resonance, quasi-monochromatic wave field)

- explore beyond the range of the hydrodynamic system
- discover new quantum-like features; e.g. stable spin states
- extended to 3D, where helical spin states have now been found

• connect to and inform quantum pilot-wave theories

(Bush, ARFM, 2015)

Classical pilot-wave dynamics: a parametric generalization

$$\begin{aligned} \kappa_0(1-\Gamma)\ddot{\mathbf{x}}_p + \dot{\mathbf{x}}_p &= \frac{2}{(1-\Gamma)^2} \int_{-\infty}^t \frac{J_1(|\mathbf{x}_p(t) - \mathbf{x}_p(s)|)}{|\mathbf{x}_p(t) - \mathbf{x}_p(s)|} (\mathbf{x}_p(t) - \mathbf{x}_p(s)) e^{-(t-s)} \, ds \\ \text{INERTIA} \qquad \text{DRAG} \qquad \qquad \text{WAVE FORCING} \end{aligned}$$
where
$$\begin{aligned} \Gamma &= \frac{\gamma - \gamma_W}{\gamma_F - \gamma_W} \quad , \qquad \qquad \kappa_0 &= (m/D)^{3/2} k_F \sqrt{gA/2T_F} \\ \text{PROXIMITY TO THRESHOLD} \quad & 0.8 < \kappa_0 < 1.6 \text{ in lab} \end{aligned}$$

Question: For what values of (κ_0, Γ) does the system look most like QM?

- Eg.1 When are hydrodynamic spin states stable?
- Eg.2 When is walking state unstable to in-line oscillations?

Generalized pilot-wave theory: the free particle in 2D

- stable, wobbling and precessing spin states may obtain
- walking state may be unstable to in-line oscillations with wavelength λ_F
- aperiodic `*jittering*' gives rise to random walk with diffusivity $D \sim U \lambda_F$

Generalized pilot-wave dynamics

$$\kappa_0 (1 - \Gamma) \ddot{\mathbf{x}}_p + \dot{\mathbf{x}}_p = \frac{2}{(1 - \Gamma)^2} \int_{-\infty}^t \frac{J_1(|\mathbf{x}_p(t) - \mathbf{x}_p(s)|)}{|\mathbf{x}_p(t) - \mathbf{x}_p(s)|} (\mathbf{x}_p(t) - \mathbf{x}_p(s)) e^{-(t-s)} ds$$

INERTIA DRAG

WAVE FORCING

where

$$\Gamma = \frac{\gamma - \gamma_W}{\gamma_F - \gamma_W}$$

CONTAINS ALL FLUID PARAMETERS:

 $\kappa_0 = (m/D)^{3/2} k_F \sqrt{gA/2T_F}$

PROXIMITY TO THRESHOLD BOUNDED IN HYDRODYNAMIC SYSTEM

Question: For what values of (κ_0, Γ) does the system look most like QM?

Further generalizations

- consideration of alternative wave forms, spatio-temporal damping (Durey, *Chaos*, 2020; Valani *et al.*, *PRE*, 2021)
- extend pilot-wave dynamics to three dimensions (3D spin states now found)
- include stochastic forcing, study hybrid pilot-wave stochastic dynamics
- connect to/inform quantum pilot-wave theories of Bohm and de Broglie and their modern extensions

The (Old) Hydrodynamic Interpretation of Quantum Mechanics

Schrodinger:

$$i\hbar \Psi_t = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V \Psi$$

Madelung transformation (1928):
 $\Psi = \sqrt{\rho} e^{iS/\hbar}$
Continuity:
 $\frac{D\rho}{Dt} + \rho \nabla \cdot \mathbf{u} = 0$
 $\frac{\partial S}{\partial t} + \frac{1}{2} \mathbf{u}^2 - \frac{\hbar^2}{2m^2} \frac{1}{\sqrt{\rho}} \nabla^2 \sqrt{\rho} + \frac{V}{m} = 0$
QUANTUM POTENTIAL Q
where $\rho = |\Psi|^2$ is the probability density, S is the action,
 $\mathbf{u} = \nabla S/m$ is the quantum velocity of probability,
 $\mathbf{j} = \rho \mathbf{u}$ is the quantum probability flux.

Bohmian Mechanics (1952)

- equate quantum velocity of probability \mathbf{u} and particle velocity $\dot{\mathbf{x}}_p$
- solve Schrodinger's equation for $\,\Psi\,$, from which $\,Q\,$ is computed
- solve trajectory equation

$$m \ddot{\mathbf{x}}_p = -\nabla Q - \nabla V$$

David Bohm

Successes

• given initial conditions consistent with solution, it predicts emergent statistics consistent with those of the standard quantum formalism

(adapted by Gernot Bauer from Philippidis, Dewdney, & Hiley 1979: 23, fig. 3)

• a counterexample of the Impossibility Proofs that held sway at the time

Surreal trajectories

- Englert, Sully, Süssman and Walther (ESSW). 1992

• proposed an interference experiment intended to expose the shortcomings of Bohmian mechanics

`Bohmian trajectories are at odds with common sense: they are not real, they are surreal.'

- their reasoning was criticized by Aharanov & Vaidman (1996), who concluded:
 - *`ESSW does not show that Bohmian mechanics is inconsistent, only that Bohmian trajectories behave differently from what one would expect classically.'*

• experimental investigations using `weak measurement' found mean trajectories consistent with the surreal trajectories (*Mahler et al., 2016*)

`We demonstrate that the trajectories seem surreal only if one ignores their manifest nonlocality.'

- `surreal' trajectories are not at odds with classical intuition informed by a familiarity with pilot-wave hydrodynamics
- may be readily understood as a manifestation of non-Markovian pilot-wave dynamics, with no need to invoke `quantum nonlocality'

NewScientist Seven wonders of the quantum world

From undead cats to particles popping up out of nowhere, from watched pots not boiling – sometimes – to ghostly influences at a distance, quantum physics delights in demolishing our intuitions about how the world works. Michael Brooks tours the quantum effects that are guaranteed to boggle our minds.

- Corpuscles and buckyballs
- 2. The Hamlet effect
- 3. Something for nothing
- 4. The Elitzur-Vaidman bomb tester
- 5. Spooky action at a distance
- 6. The field that isn't there
- 7. Superfluids and supersolids

 D_2

- in absence of bomb, interference always causes photon to arrive at D1
- with bomb, particle either detonates bomb (Path 1) or arrives at D2 or D1 with equal probability
- if bomb is present 50% of the time, then you can detect it 25% of the time via a particle that took Path 2, so never interacted with it

A hydrodynamic analog of the quantum Bomb tester

- Frumkin & JB, PRA (2023)

- submerged topography (orange) plays the role of the `bomb'
- in the absence of the bomb, all trajectories go to the left
- in the presence of the bomb, surreal trajectories may arise:
 - the droplet's pilot-wave interacts with the bomb, altering the droplet's path
- 25% of the time, the droplet detects a bomb along a path it didn't take

Bohmian Mechanics (1952)

- equate quantum velocity of probability \mathbf{u} and particle velocity $\dot{\mathbf{x}}_p$
- solve Schrodinger's equation for $\,\Psi\,$, from which $\,Q\,$ is computed
- solve trajectory equation

$$m \ddot{\mathbf{x}}_p = -\nabla Q - \nabla V$$

Shortcomings

- Einstein's objection: it is `*nonlocal'* by virtue of the quantum potential Q
- no mechanism for wave generation; no feedback of particle on field

Extensions (Bohm & Vigier 1954)

• invoke a stochastic forcing $\nabla \Phi_S$ from a `sub quantum realm':

$$m \ddot{\mathbf{x}}_p = -\nabla Q - \nabla V + \nabla \Phi_S$$

• particles jostle about u like Brownian motion of gas molecules about streamlines

Particle vibration on the Compton scale

• Frank Wilczek (*The Lightness of Being*, 2008): `a poem in two lines'...

• de Broglie (1926) suggested microscopic particles have an internal clock at ω_c that generates a wave that moves in concert with the particle

particles move in resonance with a guiding or `pilot' wave field

de Broglie's pilot-wave theory: The double-wave solution

- " A freely moving body follows a trajectory that is orthogonal to the surfaces of an associated wave guide".
 - Louis de Broglie (1892-1987)

 $\omega_c = \frac{m_0 c^2}{\hbar}$

• Ψ is the probability wave, as prescribed by standard quantum theory

• $\phi = |\phi| e^{i\Phi/\hbar}$ is a real physical wave responsible for guiding the particle

according to his Guidance Equation: $\dot{\mathbf{x}}_{\mathbf{p}} = \frac{\hbar}{m_0} Im \left| \frac{\nabla \phi}{\phi} \right|$

- wave generated by internal particle vibration (*Zitterbewegung*) at the Compton frequency:
- a solution of Klein-Gordon equation triggered by oscillations in rest mass
- particle follows point of constant wave amplitude: his guidance equation yields $\mathbf{p} = \gamma m_0 \dot{\mathbf{x}}_{\mathbf{p}} = \nabla \Phi = \hbar \mathbf{k} \quad \text{for a monochromatic wave} \quad \Phi = \mathbf{k} \cdot \mathbf{x} - \omega t$
- Harmony of Phases: the particle oscillates in resonance with its guiding wave
- *incomplete*: wave generation mechanism, precise form of ϕ not specified

de Broglie's pilot-wave theory

- fast dynamics: mass oscillations at $\omega_c = \frac{m_0 c^2}{\hbar}$ create wave field centered on particle
- **intermediate** pilot-wave dynamics: particle rides its guiding wave field such that

$$\mathbf{p} = \hbar \mathbf{k}$$

• **long-term statistical** behaviour described by standard quantum theory

	de Broglie	Walkers
WAVE TRIGGER	ZITTERBEWEGUNG	Bouncing
VIBRATION FREQUENCY	$\omega_c = \frac{m_o c^2}{\hbar}$	$\omega_d = \sqrt{\frac{\sigma}{m}}$
WAVES	Matter waves	Capillary Faraday
WAVE-PARTICLE RESONANCE	Harmony of phases	$\omega_d=\omega_F$
WAVE ENERGETICS	$mc^2 \iff \hbar\omega$	$mgH \longleftrightarrow$ Surface Energy
KEY PARAMETER	\hbar	σ
STATISTICAL WAVELENGTH	λ_B	λ_F
VIBRATION LENGTH	$\lambda_c = h/mc$	λ_F

Shortcomings of the quantum pilot-wave theories

• no mechanism specified for pilot-wave generation

Bohmian mechanics

- a dynamical reformulation of a statistical theory
- particle is piloted by a wave form Ψ of unspecified origins
- *nonlocal*: particle is guided by the non-local quantum potential

de Broglie's mechanics

- original double-solution theory distinguished between ϕ and Ψ
- form of pilot-wave ϕ unspecified: several options considered
- at one stage set $\phi \propto \Psi$: reduces to Bohmian mechanics

→ two theories conflated into `de Broglie-Bohm theory'

So, what is the matter wave field in QM?

• workers in Stochastic Electrodynamics (SED) suggest an EM pilot wave (*de la Pena, Cetto, Valdes-Hernandes 2015*)

• de Broglie suggested that the field satisfies the Klein-Gordon equation, as describes the Higgs field and weak *gravitational* waves ...

What might de Broglie have tried had he had MATLAB?

Hydrodynamically-inspired quantum field theory

Dagan & Bush (2020)

• extend de Broglie's mechanics, informed by pilot-wave hydrodynamics

``...we can envisage a more active role for the particle, something which is not even admitted as conceivable in the conventional view. This may, for instance, enter as a 'source' of the pilot-wave field through an inhomogeneous term in the wave equation..." — Holland (1995)

• model particle as wave source, an oscillation at twice the Compton frequency

Forced Klein-Gordon equation

$$\phi_{tt} - c^2 \phi_{xx} + \omega_c^2 \phi = \epsilon \sin(2\omega_c t) e^{-[(x-x_p)/\lambda_c]^2}$$

`particle': a localized excitation in the Higgs field

- consider the zero-particle-inertia, no-wave-damping limit
- particle moves in response to gradients in wave amplitude

Guidance equation:

HQFT

Durey & Bush (2020)

- above a critical coupling constant α_c , particle self propels
- deduced analytically the form of the 1D and 2D pilot-wave field by solving an IVP
- pilot wave and particle momentum related through: $\bar{p} = \gamma m v = \hbar k$

• superposition of radially propagating waves with λ_c and carrier wave with λ_B

- markedly different from the horseshoe-like form of the walker wave field
- for v << c, the 2D pilot-wave field takes the form of a plane wave with λ_B

Hydrodynamically-inspired quantum field theory II

David Darrow & JB

• combine particle and field Lagrangians at the level of actions

$$\begin{split} \mathcal{S} &= \mathcal{S}_{\text{field}} + \mathcal{S}_{\text{particle}} + \mathcal{S}_{\text{interaction}} \\ &\downarrow \\ \mathcal{S}_{\text{field}} &= \frac{1}{2} \int_{\Omega} d^4 q \; \left(\partial^{\mu} \phi \partial_{\mu} \phi - \omega^2 \phi^2 \right) \\ \mathcal{S}_{\text{particle}} &= - \int_{0}^{t'} dt \; mc^2 \gamma^{-1} \\ \mathcal{S}_{\text{interaction}} &= \int_{0}^{t'} dt \; \gamma^{-1} \left(a_{\tau} \phi(q_p) + b_{\tau} \gamma \dot{q}_p^{\mu} \partial_{\mu} \phi(q_p) \right) \end{split}$$

Coupled wave and guidance equations

HQFT II

$$(\partial_{\mu}\partial^{\mu} + \omega^{2})\phi = \gamma^{-1}(a_{\tau} - \dot{b}_{\tau})\delta^{3}(q - q_{p})$$

$$\frac{d}{dt}\left((m - a_{\tau}\phi(q_{p}))\gamma\dot{q}_{p}\right) = \gamma^{-1}(a_{\tau} - \dot{b}_{\tau})\nabla\phi(q_{p}) \longrightarrow \begin{vmatrix} (\partial_{\mu}\partial^{\mu} + m^{2})\phi = \gamma^{-1}b\delta^{3}(q - q_{p}) \\ \frac{d}{dt}(m\gamma\dot{q}_{p}) = \gamma^{-1}b\nabla\phi(q_{p}) \end{vmatrix}$$

Coupling constants a, b

Single coupling constant b

HQFT I Dagan & Bush (2020)

$$(\partial_{\mu}\partial^{\mu} + \omega_c^2)\phi = -\sin(2\omega_c t)\delta^3(q - q_p)$$

 $\gamma \dot{q}_p = -\alpha \nabla \phi$

- 1. Frame-dependent
- 2. Non-inertial dynamics
- 3. Forced oscillations at ω_c
- 4. No steady rectilinear state

HQFT II

$$(\partial_{\mu}\partial^{\mu} + m^2)\phi = \gamma^{-1}b\delta^3(q - q_p)$$

$$\frac{d}{dt}\left(m\gamma\dot{q}_p\right) = \gamma^{-1}b\nabla\phi(q_p)$$

- 1. Lorentz invariant
- 2. Inertial dynamics
- 3. Time independent

\rightarrow Emergent oscillations at ω_c

Slit diffraction with HQFT II

Single slit diffraction pattern

Trajectories

Trajectories inside slit

Double slit pattern

Trajectories

Trajectories inside slit

The New Hydrodynamic Interpretation of QM

• an amalgam of de Broglie's pilot-wave theory and the walker system

"Bush (2015) has further explored this sort of possibility for the emergence of a Bohmian version of quantum mechanics from something like classical fluid dynamics. A serious obstacle to the success of such a program is the quantum entanglement and nonlocality characteristic of many-particle quantum systems."

- S. Goldstein, Bohmian Mechanics (Stanford Encyclopedia of Philosophy, 2021)

Nonnonlocality: misinferences of non-locality from local hereditary pilot-wave dynamics Harris et al. (2013)

1. Wave function collapse

• act of observation causes instantaneous collapse of statistical wave form

2. Spooky action at a distance

Harris et al. (2018)

Sáenz et al. (2020)

interaction with pillars and well: wave-mediated local forces give rise to apparently non-local lift forces

3. Real surreal trajectories

Frumkin et al. (2022)

 wave-mediated forces play role of non-local quantum potential in Bohmian mechanics

Bell Tests: the acid test of quantumness

• can be performed on any probabilistic system consisting of two subsystems (1, 2) on which one measures a stochastic process with outcomes X = +1 or -1

$$S = |M(a, b) + M(a', b) + M(a, b') - M(a', b')| \le 2 \quad \forall (a, a', b, b')$$

where $M(\alpha, \beta)$ is the average product:

$$M(\alpha,\beta) = \langle X_1 X_2 \rangle_{\alpha,\beta} = \sum_{X_1,X_2} X_1 X_2 P(X_1,X_2|\alpha,\beta)$$

and $P(X_1, X_2 | \alpha, \beta)$ is the joint probability of (X_1, X_2) when the left and right analyzers are set to (α, β) .

Assumptions

- 1. Realism
- 2. Locality
- 3. Measurement independence

2-particle correlations: towards hydrodynamic Bell tests

- Papatryfonos, Nachbin, Labousse, Vervoort, JB

Approach

- drops confined to a pair of wells across which they tunnel unpredictably between the ground (preferred) state and the excited state
- identify +/- (excited/ground) states with inner/outer cavities
- identify well geometries with measurement settings
- explore various measurement settings, measure emergent statistics
 - seek violations of Bell's Inequality

Violating Bell's Inequality: static Bell test

• assumption of Measurement Independence not valid: the geometry of both cavities influences the pilot wave, the probability of outcomes in both cavities...

Towards a dynamic Bell test

- Nachbin (2022)

• use dynamic topography to isolate the two subsystems

- excited, correlated state survives topographically-induced isolation
- might the static Bell violations likewise survive dynamic changes in measurement settings? *Might memory account for entanglement?*

Overview

The hydrodynamic pilot-wave system

- provides a vehicle to explore the boundaries between classical and QM
- extends the range of classical systems to include features previously thought to be exclusive to the microscopic, quantum realm
- provides a conceptual framework, a progressive approach, for understanding QM

Pilot-wave hydrodynamics demonstrates how classical hereditary mechanics gives rise to behavior that is taken as evidence of non-locality in QM.

- is reminiscent of the de Broglie's pilot-wave theory of quantum dynamics
- suggests the shortcomings of quantum pilot-wave theories of de Broglie and Bohm
- has motivated a new class of local theoretical models of quantum dynamics
- suggests that the quantum paradoxes may be resolved through the elucidation of pilot-wave dynamics on the Compton scale

Perspective

• at the time that pilot-wave theory was developed by de Broglie, there was no macroscopic analog to draw upon.

Now there is.

• pilot-wave dynamics can give rise to quantum-like behaviour on the macroscale.

So why not the microscale?