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e 50%: 2 problem sets (group discussion encouraged)

e 50%: course project on subject of your choosing

- 30% based on final paper, 20% final presentation

There is no required text for the course, which will be based on the lecture notes;
however, supporting material will be suggested throughout the course.
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CLASSICAL PHYSICS

Initial conditions uniquely determine outcome.

(Poincaré 1900s, Lorenz 1960s)

Complex systems are sensitive to initial conditions.

(Volterra 1920, Brillouin 1926)

Predictive power requires knowledge of both ICs and history.

Pilot-wave hydrodynamics demonstrates how classical hereditary mechanics
gives rise to behavior that, in OM, is taken as evidence of non-locality.



e a wave theory that describes the statistics of microscopic particles

e fails to describe particle trajectories — indeed, some flatly deny that they exist

® an association of a particle with a wave

But where is the particle, and why does it move?

¢ an insistence on the completeness of a trajectory-free quantum mechanics
has lead to longstanding difficulties

— the proliferation of quantum interpretations

— an abundance of paradoxes and troubling language



seek a rational dynamics that underlies the theory of quantum statistics:
seek to describe particle trajectories

most involve a pilot-wave dynamics in which a particle is guided by a wave

de Broglie (1926) proposed a double-wave pilot-wave theory of quantum dynamics:
quantum particles move in resonance with a monochromatic guiding wave

Bohm (1952) presented a single-wave pilot-wave theory: a particle is guided by
the standard quantum wavefunction

Nelson (1966) proposed Stochastic Dynamics, that QM may be understood in
terms of a diffusive, random-walk-like process

de la Penia & Cetto (1996, 2015) have developed Stochastic Electrodynamics,
in which the pilot-wave 1s sought in the electromagnetic quantum vacuum



® in 2005, Couder and Fort discovered a hydrodynamic pilot-wave system
in which a particle moves in resonance with a guiding wave

e the first macroscopic realization of the double-solution pilot-wave
dynamics proposed by Louis de Broglie in the 1920s

e cxhibits several features of quantum systems thought to be exclusive to
the microscopic, quantum realm

What are the key dynamical features responsible for the
quantum-like behavior?

What are the potential and limitations of this hydrodynamic
system as a quantum analog?

Can it guide us towards a rational theory for quantum dynamics?



“Both matter and radiation possess a remarkable duality of character, as they
sometimes exhibit the properties of waves, at other times those of particles.

Now it 1s obvious that a thing cannot be a form of wave motion and composed
of particles at the same time - the two concepts are too different.”




An experimental exploration of the potential and limitations of the
walking-drop system as a quantum analog.

Theoretical modeling of the walking droplet system.

A mathematical bridge between hydrodynamic and quantum
pilot-wave theories.

An extension of quantum pilot-wave theories, informed by the
hydrodynamic system.
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Noncoalescence on a vibrated fluid bath




Couder et al. (2005)

® resonance condition: drop bounces at Faraday frequency

¢ resonant bouncing droplets may be destabilized by their wave field, walk
e gspatially extended walkers consist of both droplet and guiding/pilot wave

e drop dynamics is non-Markovian, hereditary: wave force depends on its history

e proximity to Faraday threshold prescribes longevity of waves,
Eddi et al. (2011)



E

Single-particle diffraction and interference
Unpredictable tunneling
Quantized Landau orbits and Larmor levels

Doubly- quantized orbits in a simple-harmonic potential



““ A phenomenon which 1s
impossible, absolutely
impossible, to explain in any
classical way, and which has
in it the heart of quantum
mechanics. In reality, it
contains the only mystery.”
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Single slit
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Double slit

Couder & Fort (2005)




Fortetal.(2010)

e cxecute circular orbits on which

inertial, Coriolis forces balance:

® one expects an orbital radius:

¢ in the long-memory limit, a 3rd force, the

wave force, induces

e walker confined to move in the troughs of its
associated wave field
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® charge q of mass m orbits in a Qj’ f

magnetic field ‘ vortex

e walker of mass m orbits in a

Larmor levels Couder levels

de Broglie wavelength Faraday wavelength



Perrard et al. (2014)
Labousse et al. (2015)
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refined experiments and theoretical modeling

revisited original HQAs experimentally and/or theoretically
discovered and explored new HQAs

developed generalized pilot-wave theory

elucidated links with and extended quantum pilot-wave theories



. . Molacek & Bush (2013)
Trajectory equation for resonant walkers
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Bouncing drop regime diagram (20cS, 80Hz)

Molacek & Bush (2013ab) Q= 2nf(pR; /o) 1/2

3 3.5

In (m, n) mode, a drop bounces n times in m forcing periods.

e drops most readily bounce, walk when forced at their natural frequency



e strobe the system once per bounce cycle

e conceals the vertical dynamics responsible for the guiding wave

e drop appears to surf on the interface, dressed by a quasi-monochromatic pilot-
wave field that is stationary in the drop’s frame of reference




The stroboscopic model

Oza, Rosales & Bush (2013)

mXp

Dx,, = —mgVh(xy,1)

MEMORY TERM

Approximate discrete sum as integral:
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Integral-differential equation 1s amenable to analysis, provides rationale for
transition from bouncing to walking, stability of various dynamical states.
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Couchman & Bush (2020)

Rlngs of bOllIlClIlg droplets Thomson, Couchman & Bush (2020)
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Hydrodynamic spin lattices

| N Qnt Control parameters
» Geometry h,L,D
* Vibrational acceleration ’y/’yF
h |—D . H » Drop size
L » Frequency

Spin dynamics become coupled through wave-mediated interactions
which may lead to long-range correlations and spin ordering.

Transitions between long-range analog ferro- and antiferromagnetic
states can be controlled through memory, and system rotation.

Saenz et al., Nature, 2021



Pilot-wave dynamics in a rotating frame

Oza, Harris, Rosales & Bush (2013)
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Inertial orbits of walking droplets
Coriolis force:

f = 2772,() v X €2
Radial force balance:

2 _
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offset from “classical’ results

due to hydrodynamic boost factor



Quantized orbits in a rotating frame

Mid memory

Solution curve has stable
and unstable branches

)

T/AF 5 1 I 1 1 \
| 45_ ......................

4

3.5
o ¥ S Q.uantzed.qr_b.lt;may ........ _

: . destabilize via wobbling

=D 5 i ime L i S i . e R e Semserimmriestiestne sessss s -
2_.. ............ :"Wobbllngstat'e-ss-:tablllzedby

15 bouncmg phase variations

3
201, /V,

e stable quantized orbits

High memory

0f5 ‘; 1?5 ;-_’ 2.5 é 3.5 4 4.t
20A,/V,

e stable and unstable orbits



Chaotic, orbital pilot-wave dynamics Harris & Bush (2015)
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¢ intermittent switching between weakly unstable periodic orbits

e coherent, wave-like statistics emerge from chaotic pilot-wave dynamics



Hydrodynamic spin states at ultra-high memory?
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Oza, Rosales & Bush (2018)

Balance between inertial and wave force.

Orbital radii split by applied rotation.
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® a damped, driven, pilot-wave system

e work done by vibrational forcing balances viscous dissipation

Q1: What is the mass of a walker?

02: What trajectory equation would be inferred?



In the weak-acceleration limit, the trajectory equation takes the form

where the walker mass and momentum

depend on the hydrodynamic boost factor:

and a nonlinear drag drives it to its free walking speed.

® the inviscid dynamics of a particle with a speed-dependent mass



Damiano et al. 2016, Harris et al. 2018

v/vr = 99.6%

e pillar acts to locally suppress the walker-induced wave field




Logarithmic spiral
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where 1s the walker’s instantaneous angular velocity

e identical forms of Coriolis force acting on a mass
and the Lorentz force acting on a charge was the basis

for the analogy between inertial orbits and Larmor levels (Fort et al. 2010)

e here, it indicates that the walker 1s similar to a charge moving in the
magnetic field associated with its own motion

—>

e a wave-mediated force gives rise to apparent “spooky action at a distance’



Friedel oscillations

e modulations of the probability density of the electron-sea on
a substrate due to the presence of a scattering impurity

e taken as evidence of the finite size of an electron

Unknown interaction mechanism

Modeled as localized scattering potentials



WALKER-WELL INTERACTION

Experimental Setup

D

Drop drawn in along an Archimedean spiral
Well
Region of high excitability Speed modulations induced by interaction

P <P <P with waves generated above the well



WALKER-WELL INTERACTION

Experimental Setup
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Region of high excitability Speed modulations induced by interaction

P <P <P with waves generated above the well



A hydrodynamic analog of Friedel oscillations
Sdenz, Cristea-Platon & Bush (Sci. Advances, 2020)

. arises due to wave-induced speed modulations in outgoing trajectory
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Crommie et al. 1993

Friedel-like oscillations are not inconsistent
with the notion of particle trajectories



The quantum corral
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Probability density function

e emergent statistics not inconsistent with the notion of particle trajectories



The elliptical corral

Trajectories Mean speed

e correlation between position and speed, as in the circular corral

e cxhibits statistical projection effects analogous to the "quantum mirage’

- Saengz, Cristea-Platon & Bush, Nat. Phys. (2018)



A striking equivalence

Instantaneous wave Average wave Particle’s histogram
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A superposition of statistical states




The mean pilot-wave field

Instantaneous wave Average wave 77 (X) Particle’s histogram ,LL(X)
=T
Theorem (Durey, Milewski & JB, 2018) ) ng(x) :r;o
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e the average wave field, 7(x), corresponds to the convolution of the pdf, p(x)
and the wave field of a stationary bouncing droplet, 75 (X)

e allows one to associate waveforms with trajectories



e when walker motion is confined by boundaries or applied forces, the
instantaneous pilot wave approaches the mean wave field at high Me

e.g. simulated 1D pilot-wave dynamics of a localized walker oscillation

¢ the drop moves in its self-induced “mean-pilot-wave’ potential, as may be

rationalized in terms of memory rather than nonlocality Durey, Milewski & JB (2018)



Emerging physical picture:
3 time scales

fast

intermediate

long-term statistical




