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ABSTRACT

We present the results of a theoretical investigation into the dynamics of a vibrating particle propelled by its self-induced wave field. Inspired
by the hydrodynamic pilot-wave system discovered by Yves Couder and Emmanuel Fort, the idealized pilot-wave system considered here
consists of a particle guided by the slope of its quasi-monochromatic “pilot” wave, which encodes the history of the particle motion. We
characterize this idealized pilot-wave system in terms of two dimensionless groups that prescribe the relative importance of particle inertia,
drag and wave forcing. Prior work has delineated regimes in which self-propulsion of the free particle leads to steady or oscillatory rectilinear
motion; it has further revealed parameter regimes in which the particle executes a stable circular orbit, confined by its pilot wave. We here
report a number of new dynamical states in which the free particle executes self-induced wobbling and precessing orbital motion. We also
explore the statistics of the chaotic regime arising when the time scale of the wave decay is long relative to that of particle motion and
characterize the diffusive and rotational nature of the resultant particle dynamics. We thus present a detailed characterization of free-particle
motion in this rich two-parameter family of dynamical systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0039975

The first macroscopic realization of a pilot-wave dynamics of
the form proposed by de Broglie was discovered in 2005: an oil
droplet may “walk” across the surface of a vertically vibrating
fluid bath, propelled by its own wave field. This hydrodynamic
pilot-wave system exhibits many features previously thought to
be exclusive to the quantum realm, including orbital quantization
and emergent wavelike statistics. We here present a theoretical
investigation of an idealized pilot-wave system endowed with the
dynamical features of the walking-droplet system critical to its
quantum-like behavior. We pay particular attention to character-
izing a new class of orbital states and the chaotic motion arising
when the pilot wave is long lived. We thus provide a comprehen-
sive characterization of the free-particle dynamics arising in this
pilot-wave system.

I. INTRODUCTION

A millimetric, bouncing droplet may self-propel on the sur-
face of a vertically vibrating fluid bath, guided by its accompanying
Faraday wave field.1 The decay time of the subcritical Faraday waves

increases with the magnitude of the vibrational forcing, thus increas-
ing the longevity and propulsive influence of the waves generated
along the droplet’s path. This decay time thus prescribes the extent
of the droplet’s “path memory.”2 In the long-path-memory limit, the
quasi-monochromatic form of the guiding, or “pilot,” wave imposes
a geometric constraint on the droplet dynamics that results in quan-
tized dynamical states.3–6 The pilot wave also leads to the emergence
of quantum-like statistics, the origins of which may be characterized
in terms of three distinct paradigms:6,7 (i) chaotic switching between
weakly unstable quantized periodic dynamical states;4,8–10 (ii) in-line
speed oscillations over the length scale of the pilot wave;11 and (iii)
asymptotic diffusion arising from the droplet’s random-walk-like
motion across its pilot-wave field.7,12–14

While the walking-droplet system is the first classical realiza-
tion of a pilot-wave dynamics of the form proposed by de Broglie,15,16

its limitations as a quantum analog prompted Bush5 to propose
the theoretical exploration of a new class of pilot-wave systems.
These idealized systems retain the salient features of the hydrody-
namic system while side-stepping some of its complexity; moreover,
they can be probed beyond the experimental regime of walking
droplets, yielding new insight into the potential for quantum-like
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behavior in classical systems. Within the pilot-wave framework con-
sidered here,5 the dynamics of a free particle may be characterized in
terms of just two dimensionless parameters, allowing for a relatively
straightforward exploration of parameter space.

As the generalized pilot-wave system considered here is rooted
in the stroboscopic model of pilot-wave hydrodynamics devel-
oped by Oza et al.,17 it has certain features in common with
the walking-droplet system, including a steady rectilinear self-
propelling state1,2,7,17–21 and in-line speed oscillations.7,13,22,23 The
generalized pilot-wave system also has features that have been iden-
tified in various theoretical models of the hydrodynamic system
but have not been observed in the laboratory. Of particular inter-
est to the present study are spin states,24–26 in which a particle
executes a circular orbit by virtue of the confining influence of
its pilot-wave field, and the erratic particle motion arising in the
long-path-memory limit.7,13,14,27–29

The generalized pilot-wave system also gives rise to dynamical
features that have been observed in neither the walking-droplet sys-
tem nor theoretical models thereof. For example, when a particle is
confined by an oscillatory potential (of the form of a Bessel func-
tion), it may switch intermittently between different orbital states,
resulting in a dynamically unstable, statistically steady state. The
long-time dynamics thus give rise to a wavelike statistical form,30

consistent with the first paradigm for the emergence of quantum-
like statistics in the walking-droplet system. When the interaction
of particle pairs was considered in this generalized framework, a
variety of periodic and chaotic bound states were shown to arise,31

demonstrating the richness of this new class of dynamical system.
Certain features of a free particle in the generalized pilot-wave

system evoke classical models of quantum systems. For example,
spin states are similar in form to the classical model of the electron.32

The in-line oscillations and jittering motion7 of the free particle
evoke the so-called Zitterbewegung, the trembling of a quantum
particle over the Compton time scale, a feature of early models of
quantum dynamics.33,34 Of particular interest here is the statistical
manifestation of structured random walks arising in the long-path-
memory limit.7,13,14,27–29 Such random walks result in asymptotic par-
ticle diffusion, giving rise to a quantum-like statistical form28,29 and
a physical picture reminiscent of Nelson’s stochastic mechanics,35 in
which quantum dynamics is imagined as a diffusive process with dif-
fusivity D = ~/(2m), where ~ is the reduced Planck constant and m
the particle mass.6

Hubert et al. 13 recently examined a new form of erratic pilot-
wave dynamics arising in their theoretical model of the walking-
droplet system. The droplet motion is characterized in terms of a
run-and-tumble dynamics,36,37 for which the resulting chaos is of the
Shil’nikov type, as arises when a homoclinic cycle interacts with a
subcritical Hopf bifurcation.38,39 In the context of pilot-wave dynam-
ics, the subcritical Hopf bifurcation corresponds to the instability of
the steady rectilinear self-propelling state,7,13,14 the homoclinic cycle
to the transition of the particle between neighboring peaks of its pilot
wave.14 The authors further show that the erratic particle motion
exhibits asymptotic diffusion, with the corresponding diffusion
coefficient decreasing with increasing path memory. We will exam-
ine here similar run-and-tumble dynamics in the context of our gen-
eralized pilot-wave framework, characterizing the relative influence
of particle inertia, drag and wave forcing on the particle motion.

We here provide a relatively comprehensive description of
the free-particle dynamics in our generalized pilot-wave system.
In Sec. II, we formulate the idealized pilot-wave system of inter-
est and devise a new numerical method for efficiently evolving the
pilot-wave system (Sec. II A). Using this numerical scheme, we iden-
tify and delineate regimes in which stable rectilinear and orbital
states arise (Sec. II B). In Sec. III, we characterize new wobbling and
precessing orbital states that arise just beyond the stability boundary
of the spin states. In Sec. IV, we explore the regime in which steady
self-propulsion is unstable, elucidating the rotational and diffusive
nature of the particle’s chaotic motion. Finally, in Sec. V, we dis-
cuss our results in the context of prior studies of the hydrodynamic
pilot-wave system and recent realist models of quantum dynamics.

II. CLASSICAL PILOT-WAVE DYNAMICS

We consider an idealized dynamical system in which a vibrat-
ing particle is propelled by the local slope of its guiding quasi-
monochromatic wave field and resisted by drag. Specifically, we
consider the evolution of a particle of mass m with position xp(t) at
time t, where the particle vibrates with period T, generating axisym-
metric standing waves about the particle’s instantaneous position.
Time-averaging the system over one vibration period19 yields a
trajectory equation of the form

mẍp + Dẋp = −F∇h(xp, t), (1a)

where D is a linear drag coefficient, F is the time-averaged force
exerted by the particle-wave interaction, h(x, t) is the time-averaged
pilot wave, and dots denote differentiation with respect to time. We
posit that the pilot wave, h(x, t), may be expressed as the superposi-
tion of quasi-monochromatic, axisymmetric waves generated along
the particle path. The waves decay exponentially in time over a time
scale τ that prescribes the longevity of the particle’s path-memory.
We thus consider a pilot-wave form

h(x, t) =
A

T

∫ t

−∞
J0(k|x − xp(s)|)e−(t−s)/τ ds, (1b)

where A is the amplitude of the wave generated at each instant in
time, λ = 2π/k is the wavelength of the pilot wave, and J0 is the
Bessel function of the first kind with order zero.17

The stationary state, characterized by xp = constant and
h(x) = (Aτ/T)J0(k|x − xp|), destabilizes when the memory time, τ ,
exceeds the critical threshold7,17

τ0 =
√

2DT

FAk2
, (2)

beyond which sustained particle self-propulsion ensues. To charac-
terize the free-particle dynamics arising beyond this critical thresh-
old (τ > τ0), we non-dimensionalize the pilot-wave system (1) by
scaling lengths with the inverse pilot-wavenumber, x ∼ k−1, time
with the memory time at the onset of self-propulsion, t ∼ τ0, and the
pilot-wave amplitude by that at the instability threshold, h ∼ Aτ0/T.
These rescalings result in the dimensionless pilot-wave system

κ0ẍp + ẋp = −2∇h(xp, t), (3a)
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h(x, t) =
∫ t

−∞
J0(|x − xp(s)|)e−µ(t−s) ds, (3b)

where κ0 = m/Dτ0 and µ = τ0/τ are dimensionless parame-
ters characterizing the particle inertia5,26 and wave damping,7,14

respectively.
As follows from (3b), the time scale over which the wave force,

−2∇h(xp, t), is influenced by the particle path is 1/µ, and diverges
in the long-path-memory limit, µ → 0. To characterize the extent
of the path memory, we define 0 = 1 − µ, where 0 = 0 at the
onset of particle self-propulsion and 0 = 1 is the limit at which
the wave damping vanishes. The parameter 0 may thus be seen to
be equivalent to the normalized vibrational forcing in the related
hydrodynamic system, with 0 = 1 corresponding to the Faraday
threshold.5,26 We henceforth refer to the pilot-wave system (3) as
the generalized stroboscopic model. By varying the system param-
eters, we may explore a parametric generalization of Oza et al.’s17

stroboscopic model of pilot-wave hydrodynamics.5,26 As this model
is rooted in the walking-droplet system, we anticipate a number of
dynamical commonalities, which we summarize below. However, by
exploring parameter regimes inaccessible in the walking-droplet sys-
tem, we identify new stable orbital states arising in the generalized
stroboscopic model.

A. Numerical method

In order to explore the dynamics of the generalized strobo-
scopic model, we here develop a new numerical framework for
evolving the pilot-wave system (3). We first recall that the pilot-
wave system (3) exhibits translational invariance, a property that we
exploit by expressing the wave field in the frame of reference moving
with the particle.7,13 We then consider the basis decomposition13

h(x, t) = a0(t)J0(|x − xp(t)|) +
∞

∑

n=1

2Re[an(t)8n(x − xp(t))], (4)

where the complex basis functions 8n(x) = Jn(r)e
inθ are defined in

terms of the imaginary unit, i, and the polar coordinates (r, θ), which
satisfy x = r(cos θ , sin θ).

It remains to determine evolution equations for the complex
wave coefficients, an(t). As detailed in Appendix A, it follows from
Eq. (3b) that the wave coefficients evolve according to

ȧ0 − Re[żpa1] + µa0 = 1, (5a)

ȧn −
1

2

[

żpan+1 − ż∗
pan−1

]

+ µan = 0, ∀n ≥ 1, (5b)

where zp(t) = xp(t) + iyp(t) is the particle position, xp = (xp, yp),
represented in the complex plane and ∗ denotes complex conju-
gation. In the complex form, the particle evolution equation (3a)
becomes

κ0z̈p + żp + 2a∗
1 = 0. (5c)

We numerically evolve the complex representation of the pilot-wave
system (5) using a fourth-order Runge–Kutta method with appro-
priate truncation of the wave coefficients, an, details of which are
provided in Appendix A.

B. Regime diagram

We proceed by characterizing the dynamics of the generalized
stroboscopic model in the entirety of the (κ0, 0)-plane (see Fig. 1).
Beyond the onset of instability of the stationary state (0 > 0), the
particle executes rectilinear motion at a constant speed7,17

u0 =
1

√
2

(

4 − µ2 − µ
√

µ2 + 8
)1/2

(6)

in an arbitrary direction. For small 0, the response of the particle
when perturbed from steady rectilinear propulsion is character-
ized by overdamped oscillations.17 As 0 is increased, the perturba-
tions become underdamped, exhibiting speed modulations over a
length scale comparable to the wavelength of the pilot wave.7 For
0 > 0c, steady rectilinear propulsion destabilizes via a subcritical
Hopf bifurcation7 and erratic particle motion ensues.13 The parti-
cle exhibits growing speed oscillations until it reverses direction and
is temporally trapped by its accompanying wave form,13 a dynamics
we further detail in Sec. IV.

Spin states24–26 may also arise in the generalized stroboscopic
model. Such states are characterized in terms of their orbital radius,
r0, and angular frequency, ω0, which satisfy the following pair of
algebraic equations:10,24,26

−κ0r0ω
2
0 = 2

∫ ∞

0

J1

(

2r0 sin
ω0s

2

)

sin
ω0s

2
e−µs ds, (7a)

r0ω0 = 2

∫ ∞

0

J1

(

2r0 sin
ω0s

2

)

cos
ω0s

2
e−µs ds. (7b)

As delineated by Oza et al.,26 spin states are stable only for
κ0 < 0.183 (see Fig. 1). The corresponding orbital radius, r0, is
well-approximated by the first zero of the Bessel function, J0(kr0)

= 0, yielding r0/λ ' 0.38, while the orbital speed, r0ω0, is generally
comparable to that of the steady rectilinear propulsion speed, u0.26

Just beyond the boundary at which spin states destabilize, we
identify a small region of parameter space in which a new class of
dynamical states emerges, taking the form of stable wobbling and
precessing orbital trajectories (see Sec. III). We note that these rel-
atively complex orbital motions all coexist with stable rectilinear
propulsion and may thus only be found with specific initialization
of the pilot-wave system. Moreover, there is a minute portion of
parameter space (depicted by the white region in Fig. 1) in which
stable wobbling, precessing, and rectilinear propulsion all coexist,
highlighting the richness of this generalized stroboscopic pilot-wave
system.

As the pilot wave is central to the propulsion of the particle, it
is informative to compare its form for the different dynamical states.
As presented in Fig. 2(a), the pilot wave accompanying steady rec-
tilinear propulsion has a horseshoe-like form ahead of the particle,
with an interference pattern apparent in the particle’s wake, remi-
niscent of that arising in the walking-droplet system.1,2,17,18,20,21,40 As
is evident in Fig. 2(b), the wave field accompanying orbital motion
is markedly different in form to that of rectilinear propulsion and
serves to confine the particle to its circular trajectory.26 The evo-
lution of the pilot wave accompanying wobbling, precessing, and
erratic states is presented in the supplementary material.
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FIG. 1. Regime diagram delineating the emergent dynamical states, as classified in the legend. As 0 is increased, perturbations from the steady self-propelling state
transition from overdamped to underdamped oscillations. In the long-path-memory limit (0 > 0c), the particle destabilizes into erratic motion. For κ0 < 0.183, stable spin
states may arise. Spin states may destabilize into stable wobbling and precessing trajectories, both of which exist within the white region. All such stable orbital states coexist
with stable rectilinear self-propelling states. White diamonds define the parameter values of the trajectories presented in the legend. The small speed perturbation, δv(t),
presented in the legend is normalized such that δv(0) = 1.

FIG. 2. The form of the pilot wave, h(x, t), for two
coexisting stable states arising at 0 = 0.75 and
κ0 = 0.15. (a) Steady rectilinear particle propul-
sion at speed u0 in the positive x-direction. (b) A
spin state, characterized by counterclockwise cir-
cular motion. In both panels, dashed lines denote
the particle path and dots denote the instanta-
neous particle position. The amplitude of the pilot
wave, h(x, t), is normalized by Aτ0/T .
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III. WOBBLING AND PRECESSING ORBITS

We proceed by characterizing the form of the wobbling and
precessing orbital states arising near the boundary of the param-
eter regime containing stable spin states. We first observe that, as
evident in Fig. 1, wobbling and precessing trajectories only arise
for 0.79 < 0 < 0.91. While a large wave force is required to trap
the particle on an orbital path, these orbital states all destabilize
at sufficiently high 0. Moreover, wobbling and precessing states
arise only for κ0 < 0.2: as inertial effects are increased, the parti-
cle’s tendency for rectilinear propulsion is enhanced, resulting in the
destabilization of orbital motion.

In order to characterize wobbling and precessing orbital states,
we first translate the coordinate system so that the origin is the aver-
age position of the particle over its entire trajectory. We then define
the particle’s instantaneous radial displacement, rp(t) = |xp(t)|, and
orbital period, P, which satisfy rp(t) = rp(t + P) for all t. Further-
more, we denote the moving average of the particle position over
one orbital period by the orbital center, xc(t), defined as9,10

xc(t) =
1

P

∫ t+P

t

xp(s) ds.

The relationship between the orbital center, xc(t), and the orbital
trajectory, xp(t), for wobbling and precessing states is illustrated in
Fig. 3. The orbital center of a wobbling orbit remains close to the
origin, tracing a trajectory similar in form to the particle path. In
contrast, the orbital center of a precessing trajectory resembles a
hypocycloid, with characteristic cusps denoting the centers of the
successive loops of the particle trajectory.

We also characterize the orbital trajectory in terms of the
instantaneous radius of curvature, R(t), which necessarily decreases
in magnitude for tighter loops. The radius of curvature is defined as

R =
|ẋp|3

|ẋp ∧ ẍp|
,

where ∧ denotes the vector product. Notably, for a circular orbit of
radius r0, the orbital radius, radial displacement and radius of cur-
vature are all equal (r0 = rp = R) and the orbital center is the origin
(xc = 0).

As evident in Fig. 4, the radial displacement and radius of cur-
vature of wobbling orbits (red curves) remain close to the orbital
radius, r0, departing to a greater extent as κ0 is increased (with 0

fixed). This behavior is suggestive of a supercritical Hopf bifurcation
as κ0 is increased beyond the instability threshold of spin states. The
particle speed, v(t) = |ẋp(t)|, varies along the trajectory, achieving
a maximum value when the radial displacement, rp, is greatest (see
Fig. 3). Moreover, the average orbital speed is typically compara-
ble to the steady rectilinear propulsion speed, u0, defined in Eq. (6).
For precessing orbits (blue curves in Fig. 4), the particle trajectory
exhibits relatively large variations in radial displacement, rp(t), and
radius of curvature, R(t). Although the bounds of rp increase with
κ0, we observe that the bounds of R remain approximately constant;
indeed, the average value of R remains close to half the wavelength of
the pilot wave. We observe that the speed variations along precess-
ing trajectories are much greater than those along wobbling orbits;
however, as on wobbling orbits, the maximum particle speed arises
when the particle is at the extremities of its orbit (see Fig. 3).

We proceed by considering the angular displacement (in
degrees), δθ , of the particle over one orbital period, P,

δθ = arccos
xp(t) · xp(t + P)

r2
p(t)

. (8)

We note that we have simplified the definition of δθ using the peri-
odicity of rp(t). As presented in Fig. 4, the period, P, and angular
displacement, δθ , both vary monotonically with increasing κ0, the
period increasing and the angular displacement decreasing. In gen-
eral, the angular displacement is not a divisor of 360◦, resulting in
the azimuthal drift of the orbital loops. We note the possibility of
an unstable branch connecting the wobbling and precessing orbital
states, as would provide a mechanism for the hysteresis observed as
κ0 is varied. Further investigation into this possibility will be left for
future consideration.

We define the instantaneous angular speed, ω(t), of the particle
as the product of its speed and the local curvature of the trajectory,
ω = v/R. We note that the angular speed is largest when the par-
ticle executes a sharp change in direction, vanishes for rectilinear
particle motion, and equals the orbital angular frequency, ω0, for
spin states. In Fig. 5, we present the evolution and bounds of the
normalized angular speed, ω/ω0, for the orbital states. We observe
that the instantaneous angular speed for wobbling states oscillates
about ω0, resulting in a mean comparable to that of spin states. In
contrast, the angular speed for precessing trajectories exhibits far
greater variations and the resultant mean is appreciably less than

FIG. 3. Orbital trajectories arising at 0 = 0.85.
(a) Wobbling trajectory at κ0 = 0.13. (b) Pre-
cessing loops at κ0 = 0.18. In both panels, the
trajectory is color-coded by the particle speed nor-
malized by that of a free particle, v/u0. The orbital
center, xc(t), is superimposed (black curve), and
the arrow denotes the direction of particle motion.
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FIG. 4. Wobbling and precessing orbital states arising at0 = 0.85, with κ0 in the range 0.104–0.197. (a) The average (dashed curves) and the upper and lower bounds (solid
curves) of the particle’s radial displacement, rp, for wobbling (red) and precessing (blue) trajectories. (b) The associated radius of curvature, R. (c) The radial displacement
of the orbital center, rc = |xc|. (d) The normalized particle speed, v/u0. (e) The orbital period, P. (f) The orbital angular displacement (in degrees), δθ , as defined in Eq. (8).

ω0 [see Fig. 5(c)]. The difference in the mean angular speed may be
attributed to the difference between the average radius of curvature
for wobbling and precessing trajectories, as quantified in Fig. 4(b).
However, for both wobbling and precessing trajectories, the max-
imum angular speed arises when the radial displacement of the
particle is greatest, coinciding with maxima in both particle speed
and curvature.

IV. ERRATIC DYNAMICS

We proceed by exploring the particle dynamics arising in the
regime where steady rectilinear propulsion is unstable (0 > 0c).

We characterize the dynamics in this regime in terms of two dis-
tinct phases, laminar and erratic13 [see Fig. 6(a)], as are related
to those arising in the canonical run-and-tumble dynamics.36,37

In the laminar (or “run”) phase, the particle motion is rectilin-
ear but accompanied by growing speed oscillations [see Fig. 6(b)].
Eventually, the speed oscillations become so large that the parti-
cle reverses direction, triggering a switch from laminar to erratic
motion. The erratic (or “tumble”) phase is characterized by unpre-
dictable changes in particle direction associated with the particle
navigating its complex wave field. When the particle eventually
escapes the confining influence of its wave field, it resumes unsteady
rectilinear motion.

FIG. 5. The angular speed of wobbling and precessing orbital states arising at 0 = 0.85. (a) The instantaneous normalized angular speed, ω/ω0, for a wobbling trajectory
arising at κ0 = 0.13. The arrow denotes the direction of particle motion. (b) The instantaneous normalized angular speed for a precessing trajectory arising at κ0 = 0.18.
(c) The mean (dashed curves) and bounds (solid curves) of the normalized angular speed for wobbling (red) and precessing (blue) trajectories arising for κ0 in the range
0.104–0.197.
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FIG. 6. Erratic pilot-wave dynamics arising at κ0 = 1, with 0 = 0.88 (red) and 0 = 0.94 (blue). (a) Sample particle trajectories. (b) and (c) Panels (i) and (ii) present
subtrajectories from (a), color-coded by (b) the instantaneous normalized speed, v/u0, and (c) the instantaneous normalized angular speed, ω/ω0. Arrows denote the
direction of particle motion. (d) Corresponding probability density function (PDF, dots) of the normalized angular speed, ω/ω0, computed over a single simulation of duration
50 000τ0 [see Eq. (2)]. The mean value of ω/ω0 is represented by the dashed line for each value of 0. (e) Corresponding evolution of the mean-squared displacement,
1(t), averaged over N0 = 1000 similarly prepared systems. The long-time behavior, 1(t) ∼ 2Dt as t → ∞, is indicative of asymptotic diffusion, whereD is the diffusion
coefficient.

We proceed by considering the influence of both the
path memory and particle inertia (characterized by 0 and κ0,
respectively) on both the asymptotic diffusivity and rotational
nature [see Fig. 6(c)] of this chaotic dynamics in the context of the
generalized stroboscopic model.

As the path memory increases, the more erratic nature of the
particle trajectory results in an overall increase in the average angu-
lar speed [see Fig. 6(d)]. In order to characterize the particle diffusiv-
ity, we consider a Monte-Carlo-like series of numerical simulations
of an ensemble of N0 similarly prepared systems. We then charac-
terize the diffusivity in terms of the mean-squared displacement,

1(t) = N−1
0

∑N0
n=1 |xn(t) − xn(0)|2, where xn(t) is the particle trajec-

tory for the nth realization. The asymptotic diffusion coefficient, D,

is defined so as to satisfy 1(t) ∼ 2Dt as t → ∞. In the long path-
memory limit, the prevalence of the erratic tumble phase decreases
the corresponding diffusion coefficient,13 as evident in Fig. 6(e). The
particle typically thus explores the plane less efficiently when the
path memory is increased.

For different values of the inertial coefficient, κ0, we observe
similar trends in the diffusion coefficient and mean angular speed as
0 is increased (see Fig. 7). Specifically, the diffusion coefficient, D, is
maximal at the instability threshold of steady rectilinear propulsion
(0 & 0c) and decreases with increasing 0,13 while the mean angu-
lar speed is smallest at the instability threshold and increases with
increasing 0. We note that the largest values of the diffusion coeffi-
cient and the smallest values of the mean angular speed are achieved
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FIG. 7. Characterization of the erratic pilot-wave
dynamics arising for 0 > 0c (above the black
curve). (a) The normalized asymptotic diffusion
coefficient, D/λu0, computed by averaging over
N0 = 1000 similarly prepared systems. (b) The
normalized mean angular speed, ω/ω0, averaged
over a single simulation of duration 50 000τ0. In
both panels, the dots are simulation results and
the curves are visual guides, representative of con-
tours. The squares correspond to the parameter
values shown in Fig. 6.

for similar values of κ0. Specifically, these extrema are achieved
near the minimizer of the instability curve, 0c(κ0), corresponding
to κ0 ≈ 0.5.

V. DISCUSSION

We have explored the dynamics of the generalized stroboscopic
pilot-wave system,5,26 in which a vibrating particle is guided by its
self-generated wave field. A new numerical framework has allowed
for an efficient exploration thereof. Our investigation has furthered
the characterization of the free particle, delineating regimes in which
steady rectilinear propulsion and orbital motion are stable dynami-
cal states. We have identified regimes in which new stable wobbling
and precessing orbits arise. We have demonstrated that these sta-
ble orbital states coexist with stable rectilinear propulsion and may
only be accessed via specific initializations of the pilot-wave system.
In the precessing state, the particle executes periodic loops superim-
posed on a hypocycloid-like trajectory. If a spin state is taken to be a
classical analog of the electron,32 then these precessing orbits would
correspond to an orbiting electron. This analog electron would then
possess two distinct forms of angular momentum that one might
refer to as intrinsic and orbital.

We have also characterized the diffusive and rotational nature
of the particle’s chaotic motion, as arises when 0 > 0c.13 In the
chaotic regime, the particle motion exhibits successive laminar and
erratic phases. The particle motion becomes increasingly erratic as
the path memory is increased, resulting in an increase of the average
angular speed and a corresponding decrease of the particle’s asymp-
totic diffusion coefficient.13 These trends appear to be independent
of the inertial coefficient, κ0, which serves only to set the instability
threshold, 0c(κ0), of steady rectilinear self-propulsion.

As a caveat, we note that although our exploration of the
(κ0, 0) parameter space (see Fig. 1) is relatively comprehensive, we
cannot rule out the possibility that more exotic dynamical states
might be found from initializations of the pilot-wave system other
than those considered here. Similarly, stable dynamical states might
arise within small pockets of parameter space when 0 > 0c, despite
the system’s propensity for chaotic particle motion at long path-
memory.

Our study has characterized new orbital states, specifically
wobbling and precessing spin states, for the free particle. While sim-
ilar orbital motions (spin, wobbling, and precessing states) also arise

in the hydrodynamic system,9,10 they are only stable when the droplet
is subjected to an applied force. It would thus be illuminating to
explore further the influence of applied forces on the particle motion
in our generalized pilot-wave framework. The aim of such investiga-
tions would be to extend existing numerical studies of the emergent
orbital and chaotic dynamics in the presence of Coriolis3,9,10,24 or
central4,21,41,42 forces to parameter regimes beyond those accessible
with the hydrodynamic pilot-wave system. Of particular interest
would be the delineation of regimes in which multiple stable attrac-
tors coexist, as has already been shown to be the case for particle
motion confined to a line7,14,23,29 and for orbital dynamics.3,9,24 It
would also be intriguing to consider the symmetry-breaking effect
of a Coriolis force on the particle’s rotational motion in the chaotic
regime and appeal to the analogy between the Coriolis and Lorentz
forces in order to characterize the emergent magnetization.

Finally, it is interesting to connect our work with recent pilot-
wave models of quantum dynamics inspired by the walking-droplet
system.43–46 In the hydrodynamic quantum field theory of Dagan
and Bush,43 a particle is propelled by the slope of a pilot wave
evolving according to the forced Klein–Gordon equation. As the
form of this model of quantum dynamics is rooted in the walking-
droplet system, we anticipate a number of dynamical commonali-
ties. Indeed, the simulations of Dagan and Bush of one-dimensional
particle motion revealed speed oscillations with the length scale of
the pilot wave7,13,22,23 and an irregular jittering motion.7,14 An explo-
ration of this hydrodynamic quantum field theory in two spatial
dimensions44 would allow one to determine whether analogous self-
induced orbital motion and stochastic dynamics might arise for free
particles on the quantum scale.

SUPPLEMENTARY MATERIAL

See the supplementary material for movies of the pilot-wave
field and MATLAB implementation of the numerical scheme gov-
erning the evolution of the pilot-wave system.
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APPENDIX A: NUMERICAL SCHEME

To derive the complex set of differential equations governing
the evolution of the pilot-wave system (3), we first define the basis
functions 8n(x) = Jn(r)e

inθ , where (r, θ) is the polar coordinate rep-
resentation of x. For use in the following derivation, we note that
8n = (−1)n8∗

−n and

∇8n(x) =
1

2
8n−1(x)

(

1
i

)

−
1

2
8n+1(x)

(

1
−i

)

. (A1)

To express the wave field in the particle frame of reference, we first
write

h(x, t) =
∫ t

−∞
80

(

(x − xp(t)) + (xp(t) − xp(s))
)

e−µ(t−s) ds.

Using Graf’s addition theorem,47

80(x + y) =
∞

∑

n=−∞

8n(x)8−n(y),

we then express the wave field, h(x, t), as the basis decomposition13

h(x, t) =
∞

∑

n=−∞

an(t)8n(x − xp(t)), (A2)

where the coefficients, an(t), are defined as

an(t) =
∫ t

−∞
8−n(xp(t) − xp(s))e

−µ(t−s) ds. (A3)

We note that the coefficients satisfy the reality condition
an = (−1)na∗

−n for all integers n.
To express the coefficients in differential form, we differentiate

(A3) with respect to t, yielding

ȧn(t) = δ−n,0 − µan(t) + ẋp(t) ·
∫ t

−∞
∇8−n(xp(t) − xp(s))e

−µ(t−s) ds,

where δm,n is the Kronecker delta. We evaluate the integral using
Eq. (A1), from which we obtain the system of ordinary differential
equations,

ȧn −
1

2

[

żpan+1 − ż∗
pan−1

]

+ µan = δ−n,0, ∀n ∈ Z. (A4)

Here, zp(t) = xp(t) + iyp(t) is the representation of the particle posi-
tion, xp = (xp, yp), in the complex plane. We then exploit the reality
condition to restrict our attention to the coefficients with n ≥ 0: the
basis expansion (A2) for h(x, t) is recast to give Eq. (4), and the sys-
tem and the system of equations [Eqs. (A4)] may be reduced to the
system (5a) and (5b). Finally, we use Eqs. (4) and (A1) to transform
the particle evolution equation (3a) into a complex form, as given in
Eq. (5c).

To account for the stiffness associated with the κ0 � 1 regime,
we present a modification of the algebraic form of the particle tra-
jectory equation (5c) in Subsection 1 of Appendix A. To initialize
the pilot-wave system for steady rectilinear propulsion or circular
orbits, we determine specific algebraic expressions for the wave field
coefficients, an, as given in Subsections 2 and 3 of Appendix A,
respectively. The magnitude of the coefficients in each of these

states determines a suitable truncation of the basis functions. Specif-
ically, for a truncation parameter δ > 0, we define the smallest
integer N such that |an| < δ for all n > N in a particular dynamical
configuration. We then set an = 0 for all n > N.

We note that the pilot-wave system (5) has no explicit depen-
dence on the particle position, zp(t), reflecting the translational
invariance of the system. Furthermore, the quadratic terms in (5a)
and (5b) arise due to our centering of the wave field in the particle
frame of reference and vanish when the particle is stationary. When
the particle motion is confined to a line (ẏp = 0), all the terms in
(5) are real and we recover the set of evolution equations derived
by Durey et al. 7 We note that Perrard and Labousse48 exploited a
similar basis decomposition to evolve the pilot-wave system (3), but
instead expressed the wave field, h(x, t), in a fixed frame of refer-
ence. As a consequence of imposing a fixed origin on the system,
one cannot capture the translational invariance of the dynamics in
a tractable manner. Finally, it is more efficient to evolve system (5)
than recasting (3) as an integrodifferential equation for the particle
position, as we need not integrate over the particle’s prior trajectory
in order to compute the wave force.10 A more complete discussion of
the numerical efficiency of different modeling approaches (includ-
ing continuous systems and iterative maps) may be found in Turton
et al. 49 and Bush and Oza.6

1. The overdamped limit

In the regime 0 < κ0 � 1, inertial effects arise on a fast time
scale, resulting in a stiff dynamical system. To overcome the resul-
tant stability issues arising when solving the pilot-wave system (5)
numerically, we modify the algebraic form of the particle evolution
equation, introducing an integrating factor to evolve the particle
position analytically in the absence of a wave force.

We first define the time step δt and integration times tl = lδt
for all l ≥ 0. To evolve the system from time tl to time tl+1, we follow
the methodology of Milewski and Tabak.50 Specifically, we multiply
the particle evolution equation (5c) by the integrating factor e(t−tl)/κ0 ,
yielding

d

dt

(

żpe
(t−tl)/κ0

)

= −
2

κ0

a∗
1e(t−tl)/κ0 .

We then introduce the modified velocity wp(t) = żp(t)e
(t−tl)/κ0 . Con-

sequently, the particle evolution in the time interval t ∈ [tl, tl+1] may
be expressed as the system

żp = wpe
−(t−tl)/κ0 , (A5a)

ẇp = −
2

κ0

a∗
1e(t−tl)/κ0 , (A5b)

which couples with (5a) and (5b) to define the pilot-wave system.
Notably, the particle velocity satisfies żp(tl) = wp(tl) and żp(tl+1)

= wp(tl+1)e
−δt/κ0 . The pilot-wave system constituted by Eqs. (5a),

(5b), and (A5) is then evolved numerically over the interval [tl, tl+1]
using a fourth-order Runge–Kutta method.

2. Steady particle propulsion

We seek steady self-propelling states of the form zp(t) = z0

+ u0te
iφ , where u0 is the steady propulsion speed [see Eq. (6)] and
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φ is the direction of propulsion in the complex plane, so xp(t)
= x0 + u0t(cos φ, sin φ). Seeking constant solutions to the wave field
coefficients [see Eqs. (5a) and (5b)] of the form an = Dne−inφ gives
rise to the difference equations,

−u0D1 + µD0 = 0,

u0

2
(Dn−1 − Dn+1) + µDn = 0, ∀n ≥ 1.

When coupled to the particle evolution equation (5c), this sys-
tem of difference equations has the solution Dn = ρ2n, where

ρ = (µ2 + u2
0)

−1/2
and 2 = (µ −

√

µ2 + u2
0)/u0.7 We then trun-

cate the wave field coefficients, an, based on their magnitude,
|an| = ρ|2|n.

3. Orbital solutions

We proceed to seek orbital solutions to (5), specifically, zp(t)
= z0 + r0e

iω0t and an(t) = Cne−inω0t. From the integral representa-
tion of an(t) [see Eq. (A3)] with xp(t) = x0 + r0(cos ω0t, sin ω0t), we
apply Graf’s addition theorem47 to obtain

Cn = in
∫ ∞

0

Jn

(

2r0 sin
ω0s

2

)

einω0s/2e−µs ds.

It is readily verified that an(t) satisfies the recurrence relations
(5a) and (5b) for all n ≥ 0. It remains, therefore, to determine the
orbital radius, r0, and angular frequency, ω0, using the equation of
motion for the particle. The substitution of the orbital ansatz into
the equation of particle motion [Eq. (5c)] determines that r0 and ω0

satisfy the single complex equation,

−κ0r0ω
2
0 + ir0ω0 + 2C∗

1 = 0,

or, equivalently,

iκ0r0ω
2
0 + r0ω0 = 2

∫ ∞

0

J1

(

2r0 sin
ω0s

2

)

e−iω0s/2e−µs ds.

By taking the real and imaginary parts of this equation, we recover
the orbital equation (7).

To justify truncating the wave field coefficients, an(t), when
simulating orbital states, we note that

|an(t)| = |Cn| ≤
∫ ∞

0

∣

∣

∣
Jn

(

2r0 sin
ω0s

2

)
∣

∣

∣
e−µs ds ≤

Mn

µ
,

where

Mn = max
x∈[0,2r0]

|Jn(x)| ∼
1

√
2πn

( er0

n

)n

as n → ∞.

The approximation51 to the upper bound indicates that |an| exhibits
exponential-like decay for large n, which we exploit to truncate the
wave field coefficients for orbital motion.
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