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Emergent order in hydrodynamic spin 
lattices

Pedro J. Sáenz1,2 ✉, Giuseppe Pucci2,3, Sam E. Turton2, Alexis Goujon2,4, Rodolfo R. Rosales2, 
Jörn Dunkel2 & John W. M. Bush2 ✉

Macroscale analogues1–3 of microscopic spin systems offer direct insights into 
fundamental physical principles, thereby advancing our understanding of 
synchronization phenomena4 and informing the design of novel classes of chiral 
metamaterials5–7. Here we introduce hydrodynamic spin lattices (HSLs) of ‘walking’ 
droplets as a class of active spin systems with particle–wave coupling. HSLs reveal 
various non-equilibrium symmetry-breaking phenomena, including transitions from 
antiferromagnetic to ferromagnetic order that can be controlled by varying the lattice 
geometry and system rotation8. Theoretical predictions based on a generalized 
Kuramoto model4 derived from first principles rationalize our experimental 
observations, establishing HSLs as a versatile platform for exploring active phase 
oscillator dynamics. The tunability of HSLs suggests exciting directions for future 
research, from active spin–wave dynamics to hydrodynamic analogue computation 
and droplet-based topological insulators.

Broken-mirror symmetry is an essential feature of many physical and 
biological systems, from magnetic metals and composites9 to DNA10. 
The most fundamental manifestation of a broken left–right symmetry 
are the spins of elementary particles such as photons or electrons11. 
Microscopic spin systems and their macroscopic analogues1,2 are 
attracting increasing interest12,13 as building blocks of information 
storage14 and metamaterials3,15 devices. Over the last decade, experi-
mental realizations of ultracold fermionic lattice gases16,17 have spurred 
advances in the understanding of charge and spin transport, promis-
ing novel technological platforms for quantum computation18,19 and 
spintronics20. In parallel, recent progress in the control of natural and 
artificial active matter has led to the discovery of emergent collective 
spin states in chemical21,22, biological23–25 and synthetic26 suspensions, 
inspiring the invention of chiral active metamaterials7. Here we dem-
onstrate a class of HSL systems27 that combines active self-propulsion 
and particle-wave dynamics.

An HSL consists of an array of in-phase bouncing droplets28, each 
drop confined by a submerged circular well and orbiting on the surface 
of a vertically vibrated liquid bath (Fig. 1a, b; Supplementary Video 1). 
Despite being macroscopic classical objects, these ‘walking’ drop-
lets display wave-mediated self and pair interactions reminiscent of 
those arising in microscopic systems29. To demonstrate the tunability of 
HSLs, we induce a range of collective ‘magnetic’ ordering phenomena 
through variations in the vibrational forcing and lattice geometry, and 
by mimicking the effect of an applied magnetic field through impo-
sition of system rotation8. We explain the experimentally observed 
particle–wave dynamics by deriving a mapping onto a reduced oscil-
lator network description4,30, generalizing models used to describe 
neuronal networks31 and other synchronization phenomena32,33. This 
mapping establishes HSLs as a versatile platform for investigating 

chiral symmetry breaking and synchronization phenomena far from 
equilibrium.

In our experiments, both the droplets and underlying liquid bath 
consist of the same 20 centistokes (cSt) silicon oil (1 cSt = 1 mm2 s−1; 
Methods section ‘Experiments’). An electromagnetic shaker vibrates 
the bath vertically with forcing acceleration Γ(t) = γcos(2πft), where γ 
is the maximum acceleration, f  the oscillation frequency, and t time 
(Fig. 1b). For sufficiently strong acceleration, the air layer between the 
drop and bath prevents direct contact, thus enabling persistent bounc-
ing34. When the drop bounces at half the driving frequency—and so 
achieves resonance with the bath’s most unstable wave mode—it excites 
radially decaying circular waves of characteristic wavelength λF on the 
bath surface34–36. The amplitude and spatio-temporal decay of these 
waves can be controlled through the driving35. When the driving ampli-
tude γ is increased beyond a critical walking threshold γw, vertical bounc-
ing becomes unstable and transitions to horizontal walking29,34. As 
walking droplets land on the slopes of the underlying wave field η, they 
experience a wave-induced horizontal force F x x xt η( , ) ∝ − ∇ |i i = i

   propor-
tional to the wave slope ∇η at the point of impact xi(t). Free droplets 
thus walk at constant speed along straight lines when γ > γw (ref. 34).

To transform linear motion into circular motion, we confined each 
walker to a submerged circular well37 (Fig. 1b, Methods section ‘Experi-
ments’). The resulting clockwise or anticlockwise motions were char-
acterized by measuring the specific spin S(t) = Lz(t)/m, where m is the 
droplet’s mass and Lz denotes its angular momentum with respect to the 
well centre. Spin is thus understood in classical terms as correspond-
ing to orbital motion. We first quantified how the spin of an isolated 
walker depends on the driving strength by progressively increasing the 
forcing acceleration γ towards the Faraday threshold γF, at which the 
bath surface becomes unstable in the absence of droplets35,36. These 
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single-spin measurements revealed an optimal signal-to-driving ratio 
for S(t) at a vibrational acceleration γc ≈ 0.85γF (Fig. 1c). For suboptimal 
driving γ < γc, the mean spin decreases with the walker’s characteris-
tic speed as γ decreases36. For γ > γc, the circular orbits deform into 
precessing trefoils (Fig. 1c) that exhibit a larger spin variance, making 
them more susceptible to spin flips when perturbed. Armed with this 
understanding of the single-spin states, we investigated the collective 
spin dynamics in one-dimensional (1D) and two-dimensional (2D) HSLs.

The wave-mediated spin–spin coupling in HSLs is reminiscent of 
spatially oscillating interactions9,38 in Ruderman–Kittel–Kasuya–
Yosida (RKKY)-type spin models. Our experimental setup allowed us 
to tune the magnitude of the spin–spin coupling by varying the driv-
ing acceleration γ and the depth H of the fluid bath between adjacent 
wells (Fig. 1b; Methods section ‘Experiments’). When the pair coupling 
is sufficiently strong, nearest-neighbour interactions may cause spin 
flips. To determine whether such flips can facilitate coherent collective 
dynamics across the lattice, we measured the normalized effective 
‘magnetization’ M(t) = ∑iSi(t) and spin–spin correlation χ(t) = ∑i~jSi(t)Sj(t),  
where ∑i~j denotes a sum over adjacent pairs. To achieve statistical 
significance, experiments were run for several hours: in 1 h a droplet 
performs approximately 105 bounces and approximately 1,800 orbits 
(Methods section ‘Statistics’). Positive values of χ signal parallel align-
ment of neighbouring spins (‘ferromagnetic’ order) whereas negative 
values of χ indicate antiparallel alignment (‘antiferromagnetic’ order).

The oscillatory wave-mediated spin–spin coupling suggests that 
HSLs can support different types of collective order depending on the 
ratio between lattice spacing L and Faraday wavelength λF. To test this 
hypothesis, we studied a 1D periodic (circular) HSL with N = 20 equally 
spaced wells and L/λF = 3.7 (Fig. 1a, d–h). Starting from a random initial 
spin configuration (Methods section ‘Statistics’), we observed that pair 
interactions can trigger multiple spin flips (Fig. 1d), leading to fluctua-
tions in the instantaneous magnetization and spin–spin correlation 
(Fig. 1e). The magnetization vanishing on average, ⟨M⟩ ≈ 0, indicated 
that global mirror symmetry was preserved (Fig. 1e). However, the 
negative pair correlation, ⟨χ⟩ < 0, revealed a bias towards local anti-
ferromagnetic order (Fig. 1g; Supplementary Video 2). Holding L/λF 
fixed, a similar antiferromagnetic bias occurred in experiments with 
non-periodic boundary conditions, different N values, and different 
lattice radii R (Methods section ‘Statistics’), confirming that antifer-
romagnetic ordering is selected by the lattice spacing. The strength 
of the emergent antiferromagnetic order depends non-monotonically 
on the driving amplitude γ (Fig. 1h; Methods section ‘Statistics’). The 
strongest collective antiferromagnetic response was observed for 
γ ≈ γc, indicating a correlation between the global collective ordering 
and the robustness of a single spin state (Fig. 1c).

The emergence of local magnetic ordering can be understood by 
analysing the drops’ horizontal phase ϕi, which plays a role analogous 
to the polar angle in XY-type spin models (Fig. 1a). To quantify pairwise 
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Fig. 1 | Spontaneous antiferromagnetic order in a 1D 
HSL. a, b, Oblique view (a) and schematic cross section  
(b) of a ring (of radius R) of submerged circular wells  
(of diameter D, depth h, centre separation L), each 
containing a single drop executing clockwise or 
anticlockwise motion on the surface of a vibrating fluid 
bath. A thin fluid layer (of depth H) between wells enables 
wave-mediated interactions between neighbouring 
droplets (Supplementary Video 1). c, Dependence of  the 
spin S and orbital radius r of an isolated walker (D = 14 mm, 
H = 1 mm, f = 80 Hz) on the dimensionless bath 
acceleration γ/γF. The solid lines are fits resulting from 
smoothing the piecewise linear curve obtained by 
connecting the data points. Once γ exceeds a critical 
threshold γc, the drop’s circular trajectory destabilizes 
into a precessing trefoil, increasing spin variation and 
susceptibility to perturbation-induced spin flips. For a 
given driving acceleration, only one state is observed. 
Insets, two typical drop trajectories, coloured by their 
instantaneous spin value, at low (top left) and high 
(bottom right) accelerations. Centrelines denote 
interpolated mean values and envelopes indicate 
standard deviations. d–f, Temporal evolution of the spin 
values Si (d), spin pair correlation χ and magnetization M 
(e), and phase difference Δϕ (f) for a 1D periodic HSL with 
N = 20 wells driven at γ/γF = 82.0%. g, Snapshot showing 
collective antiferromagnetic order at instant A in e 
(Supplementary Video 2). χA is the spin−spin correlation χ 
at instant A in e. Dashed lines highlight domains of local 
antiferromagnetic order. White circles mark drop 
positions, background colour shows the spin magnitude. 
h, Dependence of the average spin correlation ⟨χ⟩ on γ/γF.  
Solid lines are fits resulting from smoothing the piecewise 
linear curve obtained by connecting the data points as in 
c. The average spin correlation ⟨χ⟩ indicates maximal  
antiferromagnetic ordering for γ ≈ γc, highlighting that 
stable single-spin trajectories promote collective 
ordering. Error bars denote the standard deviations 
(Methods section ‘Statistics’). Experimental parameters 
in d–h: L = 17.7 mm, D = 14 mm, H = 1 mm, N = 20, f = 80 Hz, 
γF = 4.780g (where g is the gravitational acceleration), 
λF = 4.75 mm. ACW, anticlockwise; CW, clockwise.
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phase synchronization, we recorded the mean phase differences Δϕ± for 
co-rotating (+) and counter-rotating (−) neighbouring pairs, respectively 
(see Methods section ‘Statistics’). These observables signal in-phase 
(Δϕ± → 0) or out-of-phase (Δϕ± → π) rotations of neighbouring walkers, 
and so also indicate their relative distance. For antiferromagnetic HSLs, 
we found a substantial bias towards in-phase rotations (Fig. 1f). In par-
ticular, both spin–spin correlation (Fig. 1h) and phase synchronization 
are maximized at driving strength γ ≈ γc, implying a causal link between 
coherent orbital synchronization and emergent spin order.

To demonstrate how the collective spin dynamics depends on lattice 
geometry, we performed 1D experiments for a reduced lattice spacing 
L/λF = 2.8 (Fig. 2a–d). The resulting changes in the wave-mediated spin 
interactions (Fig. 2e) support extended domains of ferromagnetic 
ordering, as reflected by a positive pair correlation, ⟨χ⟩ > 0 (Fig. 2b, d; 
Supplementary Video 3), with a bias towards in-phase rotation (Fig. 2c). 
As in the antiferromagnetic HSL with L/λF = 3.7, we observed no global 
magnetization, ⟨M⟩ ≈ 0, indicating that changes in lattice geometry 
can be used to control local magnetic order but do not lead to global 
mirror-symmetry breaking.

To rationalize the manner in which geometry dictates collective spin 
order and phase synchronization in HSLs, we derived a generic phase 
oscillator model from a detailed hydrodynamic description of our 
experimental system (Fig. 2e; Methods section ‘Theory’). In this model, 
we focus on subcritical driving γ ≤ γc (Fig. 1c), so that each walker i fol-
lows a circular trajectory xi(t) = r0(cosϕi(t), sinϕi(t)), with angular fre-
quency ω ϕ=i i̇, where (r0, ϕi) are the cylindrical coordinates with respect 
to the centre of each well. The walking speed v0 then defines a preferred 
orbital frequency ±ω0 = ±v0/r0 (ref. 36). Modelling this effect by a non-
linear Rayleigh-type friction, the phase dynamics of a walker is 
described by

̇








 ∑ω

τ
ω
ω

ω F ϕ ϕ=
1

1 − + ( , ). (1)i
i

i
j

ij i j

2

0
2

  Equation (1) can be interpreted as an active XY-type model9, in which 
perturbations to ω0 decay over the timescale τ, and Fij is the wave- 
mediated force exerted on drop i by its nearest neighbour j (Fig. 2e). 
For weak accelerations and small orbital radii r0 ≪ L, the interaction 
force Fij(ϕi, ϕj) = −∂U/∂ϕi can be derived from the effective coupling 
potential U ϕ ϕ α ϕ ϕ β ϕ ϕ( , ) = (cos − cos ) + (sin − sin )i j i j i j

1
2

2 1
2

2 (Methods 
section ‘Theory’). The coefficients are proportional to the curvature, 
α J k L∝ ″ ( )F0 , and gradient, β J k L∝ ′ ( )F0 , of the coupling wave field, which 
is well approximated by a Bessel function of the first kind  J0(kF|x – xj|) 
centred at the neighbouring drop position. Here prime symbols denote 
derivatives with respect to rj = |x – xj|, and kF = 2π/λF the Faraday wave-
number. HSLs characterized by purely circular orbits, as arise for γ ≤ γc, 
thus belong to a generalized Kuramoto universality class4.

Analysis of the phase-oscillator dynamics (equation (1)) confirms 
that the spin–spin correlation alternates between ferromagnetic and 
antiferromagnetic order as the lattice spacing L is varied (Extended 
Data Fig. 4a). The associated mean phase differences (Extended Data 
Fig. 4b) revealed four different modes of pairwise symmetry breaking. 
Specifically, there are two ferromagnetic phases FM± and two antifer-
romagnetic phases AFM±, distinguished by preferential in-phase (+) 
and out-of-phase (−) rotation, respectively (Fig. 2f). Depending on L, 
the force parameters α and β can be either positive or negative, yield-
ing four magnetic phases corresponding to minima of the coupling 
potential. The model predictions agree well with our experimental 
data: the antiferromagnetic (Fig. 1d–f; L = 17.7 mm) and ferromagnetic 
(Fig. 2a–c; L = 13.2 mm) HSL experiments fall within the predicted AFM+ 
and FM+ ranges, respectively. The theory also captures how the pre-
ferred order varies with vibrational acceleration (Fig. 1h, Extended Data  
Fig. 5).

The spins in an antiferromagnetic material may be realigned into a 
ferromagnetic state by imposing a constant magnetic field B (ref. 9). 
We next sought to determine whether HSLs can undergo similar global 
symmetry breaking. The Lorentz force FB = q(v × B) acting on a charge q 
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Fig. 2 | Tuning collective order through the lattice parameters in 
experiments and theory. When the lattice spacing is reduced to L = 13.2 mm, 
the 1D HSL spontaneously settles into ferromagnetic order. Parameters: 
D = 10 mm, H = 0.8 mm, N = 28, f = 78 Hz, γ/γF = 86.0%, γF = 5.280g, λF = 4.84 mm. 
a–c, The preferred local ferromagnetic order is reflected in the instantaneous 
spins Si (a), spin–spin correlation χ and magnetization M (b), and the mean 
phase differences Δϕ± (c). d, Spin configuration at instant A in b showing four 
domains of ferromagnetic order (Supplementary Video 3). e, Geometry 
considered in the theoretical wave model. Neighbouring drops i and j move 

along circular trajectories of radius r at angular speed ±ω. The drop position is 
determined by the angular phase ϕ, defined with respect to the lattice 
centreline. Drop i is subject to a force Fij along its direction of motion, owing to 
the wave field generated by drop j, as is approximated by a Bessel function J0 
centred at its position. f, Depending on the drop separation, four dominant 
drop-pair synchronization modes are favoured, leading to the emergence of 
alternating ferromagnetic and antiferromagnetic local order as the lattice 
spacing is varied (Methods section ‘Simulations’). ACW, anticlockwise; CW, 
clockwise.



Nature  |  Vol 596  |  5 August 2021  |  61

5

10

15

20
W

el
l n

um
b

er
a

b

A B C

d

0.8

0.9

1.0

1.1

1.2
–1

0

1

–1

0

1

c

0 0.25 0.50 0.75 1.00 1.25 1.50

–1

0

1

ACW

CW

S
p

in
, S

S
p

in
 c

or
re

la
tio

n,
 

M
ag

ne
tiz

at
io

n,
 M

P
ha

se
 d

iff
er

en
ce

,
Δ

 (r
ad

)

Time, t (h)

e h

 A
ve

ra
ge

 s
p

in
 c

or
re

la
tio

n,
 <

>

Bath angular speed,
    (rad s–1)Ω

B
at

h 
an

gu
la

r 
sp

ee
d

,
   

 (r
ad

 s
–1

)
Ω

Bath angular speed,
    (rad s–1)Ω

ΩΩ

Ω

Ω
Ω

–0.6

–0.3

0

0.3

0.6

0.9

A = –0.79

B = 0.92

C = 0.99

0 0.25 0.50 0.75

c

Experiments
GK model

0.25 0.50 0.750 1.00
0.6

0.8

1.2

1.0

Counter-rotation
Co-rotation

R
ad

iu
s,

 r
/r

0

f g

M

Δ – (counter-rotation)
Δ + (co-rotation)

Fw F

ΩF

Fw

v

v

i

/ 0

i

0

π_
2

π

Fig. 3 | Inducing global polarization through applied rotation. Rotating the 
circular HSL from Fig. 1d–h induces a transition from effective antiferromagnetic 
to ferromagnetic order. a–c, The experiment was run for 1 h without rotation 
before the recording process started. During the first 0.5 h of data acquisition, 
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was reversed (Ω = −0.7 rad s−1, clockwise), leading to negative magnetization. 
Lattice parameters and forcing frequency are the same as in Fig. 1 and γ ≈ γc.  
d, Instantaneous spin configurations at time points A–C in b, showing 
antiferromagnetic and ferromagnetic ordering (Supplementary Video 4).  

χA, χB and χC are the spin−spin correlations at instants A, B and C. e, Average spin 
correlation ⟨χ⟩ signals a transition to ferromagnetic order at Ωc ≈ 0.22 rad s−1 
(Methods section ‘Statistics’). f, g, Force balance and measured trajectory, 
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The drop’s trajectory is nearly circular when its angular velocity ω and the bath 
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moving with velocity v has precisely the same form as the Coriolis force 
FΩ = m(v × 2Ω) acting on a mass m moving with velocity v in a frame rotat-
ing at constant angular velocity Ω (ref. 8) . This suggests the possibility 
of transforming antiferromagnetic HSLs into ferromagnetic states by 
rotating the vibrating bath about a vertical axis at a rate Ω (Methods 
section ‘Experiments’). To test this hypothesis, we initialized the antifer-
romagnetic HSL described in Fig. 1 without bath rotation (Ω = 0) and let 
it equilibrate for 1 h. Keeping Ω = 0 for another 0.5 h, the HSL remained in 
the antiferromagnetic state as expected (Fig. 3a, b; t < 0.5 h). At t = 0.5 h, 
we began to rotate the setup anticlockwise by gradually increasing the 
rotation rate to Ω = 0.7 rad s−1. In a matter of seconds, most spins had 
co-aligned with the bath rotation, leading to a strongly positive spin 
correlation, ⟨χ⟩ ≈ 0.58. However, unlike the steady HSL in Fig. 2a–d, the 
rotated HSL had a net magnetization, ⟨M⟩ ≈ 0.78. Moreover, when the 
rotation direction was reversed to Ω = −0.7 rad s−1 (clockwise) at t = 1 h, 
most of the spins flipped to realign with the inverted ‘magnetic’ field. 
The effective magnetization thus became negative, ⟨M⟩ < 0, while the 
spin pairs remained ferromagnetically arranged, ⟨χ⟩ > 0 (Fig. 3b; Sup-
plementary Video 4). The transition to ferromagnetic order requires 
a supercritical rotation rate |Ω| > Ωc ≈ 0.22 rad s−1 (Fig. 3e). Rotation 
also affects the pairwise phase synchronization: as the spin dynamics 
become dominated by the Coriolis force, the phase differences become 
uncorrelated, thus averaging to the mean ⟨Δϕ±⟩ ≈ π/2 (Fig. 3c).

Examining the single-spin dynamics in the rotating frame reveals the 
mechanism responsible for the field-induced polarization (Fig. 3f, g). 
For optimal driving, γ ≈ γc, a walker executes circular motion in the 
absence of rotation (Fig. 1c). When rotation is switched on, a drop 
co-orbiting with the bath experiences a Coriolis force FΩ that opposes 
the confining force of the submerged well Fw (ref. 37) (Fig. 3f). As a result, 
the drop preserves its circular trajectory but its orbital radius increases 
with Ω (Fig. 3h). Conversely, when the walker is counter-rotating with 
respect to the bath, both Fw and FΩ point inwards (Fig. 3g), destabilizing 
the circular orbits into trefoil-like trajectories similar to those observed 
for Ω = 0 and γ > γc (Fig. 1c). Droplets on these trefoil-like trajectories 
pass closer to the well centres (Fig. 3h), where their walking directions 
can be more easily reversed by perturbations from their neighbours. 
Hence, confinement favours co-rotating orbits in HSLs; conversely, 
free walkers prefer counter-rotating inertial orbits8. We note that a 
generalization of our phase-oscillator model captures the effects of 
the external field (Fig. 3e; Methods section ‘Theory’).

Two-dimensional classical and quantum spin lattices display features 
that are absent in their 1D counterparts, including geometric frustration 
and topological order9. HSLs provide a promising platform for explor-
ing such effects at the macroscale. For example, square HSLs (Fig. 4a; 
Supplementary Video 5) that promote antiferromagnetic order in the 
absence of rotation (Ω = 0; Fig. 4b, c), undergo a polarization transition 
(Ω > 0; Fig. 4b, d) as the Coriolis force is increased (Fig. 4e). Addition-
ally, simulations of larger lattices confirm the emergence of collective 
magnetic order in square lattices (Extended Data Fig. 6).

To conclude, since lattice geometry (Extended Data Fig. 7) and the 
interactions between lattice sites can be directly tailored in various ways 
(Methods section ‘Tunability’), we expect HSLs to provide a versatile 
testbed for designing wave-coupled autonomous metamaterials39, 
exploring active spin-wave dynamics13, and studying Anderson-type 
wave localization phenomena40 far from equilibrium.
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Methods

Introduction
Walking droplets in free space self-propel in a rectilinear fashion28,34–36. 
Hydrodynamic spin states41, in which a droplet executes circular orbits 
confined by its own wave field are generally thought to be unstable in the 
laboratory42,43, unless confined by an external force such as a linear spring 
force44 or the Coriolis force that acts in a rotating frame8,45–47. Recent 
experiments have demonstrated that variable bottom topography may 
be exploited to realize new hydrodynamic quantum analogues37,48; in 
particular, the influence of a submerged well has led to analogues of the 
so-called quantum mirage48 and Friedel oscillations37. In this work, we 
exploit variable bottom topography to stabilize a collection of interact-
ing hydrodynamic spin states27, and characterize the emergent collective 
order. We note that, although several works have considered the stability 
of stationary bouncing droplet lattices49–53, and other works54,55 examined 
wave-induced correlations of walker pairs confined to adjacent 1D cavi-
ties, we present here a macroscopic analogue of electronic spin systems 
with large collections of orbiting droplets.

Experiments
Stationary bath. A schematic of the experimental setup is presented 
in Extended Data Fig. 1. A circular aluminium bath was filled with silicon 
oil with density ρ = 950 kg m−3, viscosity v = 20.9 cSt, and surface tension 
σ = 20.6 mN m−1. The lattices of submerged wells were constructed by 
laser-cutting acrylic sheets of thickness h = 6.2 mm, which were then 
bolted to the base of the bath. The well depth h was thus sufficiently 
large with respect to the Faraday wavelength, λF < 5 mm, for the liquid 
inside the wells to be in the deep-water wave regime56. Similarly, the 
minimum distance d between the bath’s outer wall and the outermost 
well was sufficiently large, d > 6λF, to ensure that the meniscus waves57 
that originated at the bath wall had no effect on the experiments. We 
note that the Faraday wavelengths corresponding to the shallow λF

H 
and deep λF

h regions are only marginally different, specifically 
λ λ/ ≈ 1.05F

h
F
H . For the sake of simplicity of notation, we thus simply refer 

to both wavelengths as λF.
The bath was mounted on an optical table (Newport SG-34-4 custom 

breadboard, 3.0′ × 4.0′ × 4.32″) and vibrated vertically by an electro-
magnetic shaker (Data Physics, V55) with an external amplifier (Data 
Physics, PA300E) at acceleration Γ(t) = γcos(ωt), where γ and f = ω/2π 
are the maximum acceleration and frequency, respectively. The shaker 
is connected to the bath by a thin steel rod coupled with a linear air 
bearing (PI L.P., 4 × 4″ cross-section, 6.5″ long hollow bar) that ensures 
a spatially uniform vibration to within 0.1%58. The forcing is monitored 
through a data-acquisition system (NI, USB-6343) with two piezoe-
lectric accelerometers (PCB, 352C65), attached to the base plate on 
opposite sides of the drive shaft, and a closed-loop feedback ensures 
a constant acceleration amplitude to within ±0.002g (ref. 58); where g 
is the acceleration due to gravity. We define the Faraday threshold γF 
as the critical vibrational acceleration above which Faraday waves59 
appear above the wells. The experimental setup was left vibrating at 
γ ≈ γF for at least 1 h before running any experiment to ensure a steady 
state in the bath. The Faraday threshold was measured before and after 
each experimental run in order to ensure the constancy of the pre-
scribed driving, γ/γF, which may drift slowly owing to weak variations 
in viscosity and surface tension resulting from ambient temperature 
changes. With this protocol, the standard day-to-day variation in γF 
was limited to ±0.04g, and the variation in each experimental run was 
limited to |ΔγF|/γF < 0.003, where ΔγF represents the variation in the 
Faraday threshold over a 1-h segment.

Droplets of the same silicon oil with diameter Dd = 0.75 ± 0.01 mm 
were generated with a piezoelectric droplet-on-demand generator60, 
and placed manually above the submerged wells. The bath was illumi-
nated with a LED light ring in order to increase the contrast between 
the drops and the black background. The motion of the droplets was 

recorded at 19 frames per second with a CCD camera mounted directly 
above the bath, and tracked with an in-house particle-tracking algo-
rithm written in Matlab. The form of the wave field was captured by 
recording the normal reflection of light at the free surface57. To that 
end, a semi-reflective mirror at 45° was placed between the CCD camera 
and the bath, and the light ring was replaced by a diffuse-light lamp 
facing the mirror horizontally. One then observes images with bright 
regions corresponding to horizontal parts of the surface, extrema or 
saddle points57. To ensure that ambient air currents did not affect the 
results, the vibrating bath was enclosed within a transparent acrylic 
chamber. Experimental results obtained using the acrylic chamber were 
compared to others in which the spin system was shielded by a transpar-
ent acrylic lid bolted directly to the top of the bath. We found that the 
effective noise in the system was slightly reduced with the lid, but that 
the emergent collective behaviour was statistically indistinguishable.

The experiments were performed with walking drops bouncing 
subharmonically36 in resonance with the underlying Faraday wave 
field, each with the same vertical bouncing phase. To ensure in-phase 
bouncing, before each experiment the bath acceleration was reduced 
to γ = 1.1g, so that the droplets transitioned to harmonic bouncers36, 
synchronized with the bath vibration. By observing the light reflected 
from the upper side of the droplets, which intensifies when the droplets 
deform during impact, we were able to deduce the vertical phase of all 
the drops instantaneously. We confirmed that the drops continued 
to bounce in phase when the driving acceleration was progressively 
increased beyond γ = 1.1g, and throughout the duration of the experi-
ments. Switching in the vertical bouncing phase was observed only for 
driving accelerations, γ/γF > 90%, beyond the acceleration range where 
coherent collective behaviour emerged (Fig. 1h).

Rotating bath. To subject hydrodynamic spin lattices to bulk rotation, 
we mounted the aluminium bath on a vertical shaft attached to the 
upper plate of the linear air bearing through a system of preloaded 
ball bearings. The freely rotating shaft was connected with a vibration 
damping coupling to a d.c. electric motor with a planetary gearbox 
(Phidgets, 12 V d.c. motor, 139:1 gearbox) housed inside the hollow air 
bearing (see Extended Data Fig. 1). The rotation rate was monitored 
with an optical rotary encoder (Phidgets, HKT22) and the electric mo-
tor controlled with an in-house Python programme, yielding a rotation 
rate Ω that was constant to within ±2%.

The centrifugal force on the rotating bath induces a parabolic defor-
mation of the fluid interface of the form

H r H
Ω R

g
Ω

g
r( ) = −

4
+

2
, (2)0

2
b
2 2

2

where r is the radial coordinate with respect to the centre of the bath, 
H is the depth of the fluid at rest, and Rb the bath radius, which in the 
rotating experiments was Rb = 88 mm (Extended Data Fig. 1). To com-
pensate for the parabolic shape of the fluid surface, the liquid volume 
was readjusted in experiments with periodic 1D lattices (Fig. 3) to ensure 
that H0(R) = 1 mm, where R is the radius of the annular ring (Fig. 1a). The 
resulting variation in depth across the wells did not exceed 40 μm, and 
so had a negligible influence on the dynamics. While such an adjustment 
was not possible in experiments with 2D lattices, we note that for the 
relatively slow rotation rates required to induce the transition from 
antiferromagnetic to ferromagnetic order (Ω < 0.7 rad s−1, Fig. 4e), the 
liquid height was reduced in the centre and increased in the periphery 
by <10% with respect to the depth of fluid at rest.

Lattice parameters. The lattice parameters for the 1D antiferromag-
netic lattice discussed in Fig. 1 are L = 17.7 mm, D = 14 mm, H = 1 mm, 
N = 20, f = 80 Hz, γF = 4.780g, λF = 4.75 mm. The lattice parameters of 
the 1D ferromagnetic lattice shown in Fig. 2 are L = 13.2 mm, D = 10 mm, 
H = 0.8 mm, N = 28, f = 78 Hz, γF = 5.280g, λF = 4.84 mm. We note that 
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for the 1D ferromagnetic lattice, we reduced the well diameter D and 
liquid height H to compensate for the heightened pair coupling re-
sulting from locating the wells closer to each other. Such modifica-
tion helped reduce the effective noise by both increasing the wave 
damping in the shallow region, and stabilizing the droplets’ circular 
trajectories. We note that the vibration frequency, which effectively sets 
the characteristic wavenumber kF, was also fine-tuned to accentuate 
the ferromagnetic response. The lattice parameters for the 2D square 
lattice shown in Fig. 4 are L = 17.3 mm, D = 13 mm, H = 0.96 mm, N = 37, 
f = 80 Hz, γF = 4.940g, λF = 4.75 mm. Experiments were also performed 
with lattices with size N = 7 × 7.

Statistics
Order parameters. To characterize the collective behaviour in HSLs, 
we define three instantaneous order parameters, specifically the mag-
netization M(t), spin–spin correlation χ(t), and average phase difference 
Δϕ(t). The magnetization, which serves to quantify the global symmetry 
breaking, is defined as

M t
S t
S t

( ) =
∑ ( )

∑ | ( )|
, (3)i i

i i

where ∑i denotes the sum over all N spins, and Si(t) = Lz,i(t)/m is the 
specific spin of droplet i with mass m and angular momentum Lz,i with 
respect to the well centre. The denominator is the normalizing factor 
such that M ∈ [−1, 1]. Positive (negative) values of M(t) signal a larger 
number of walkers rotating anticlockwise (clockwise). Pairwise sym-
metry breaking is quantified through the normalized spin–spin cor-
relation,

χ t
S t S t

S t S t
( ) =

∑ ( ) ( )

∑ | ( ) ( )|
, (4)

i j i j

i j i j

~
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where ∑i~j denotes sums over pairs {i, j} of adjacent walkers. χ ∈ [−1, 1] 
thus signals a preference for co-rotation (χ > 0, ferromagnetic order) 
or counter-rotation (χ < 0, antiferromagnetic order) among neigh-
bouring walkers.

To quantify the relationship between the emergent collective behav-
iour and the pairwise orbital phase synchronization of adjacent walk-
ers, we compute separately the mean phase difference Δϕ± ∈ [0, π] for 
co-rotating (+) and counter-rotating (−) walkers as

∓∑ϕ t
N

ϕ t ϕ tΔ ( ) =
1

| ( ) ( )|, (5)
p i j

i j±
~± ±

where ϕi is the instantaneous horizontal phase with respect to the lat-
tice centreline (Fig. 1a), and ∑ ~i j±

 denotes the sum over Np±
 adjacent 

co-rotating (Np+ and i~j+) or counter-rotating (Np– and i~j–) pairs of walk-
ers. The phase difference thus allows us to identify if there is preference 
for in-phase (Δϕ → 0) or out-of-phase (Δϕ → π) rotation among adjacent 
walkers. We note that incoherent orbital synchronization corresponds 
to Δϕ → π/2.

Data-acquisition protocol. To guarantee robust statistics, we develop 
a systematic data-acquisition protocol. The goal is to repeat multiple 
times a sufficiently long experiment to ensure that (i) the initial spin 
distribution is random, and (ii) the spin system reaches a statistically 
steady state. To guarantee random initial conditions, we manually 
stirred with a needle all the drops at the beginning of each run. By 
checking that the spin correlation started from 0 at the beginning of 
each experimental run, we confirmed that our stirring procedure was 
adequate. We also checked that the stirring did not disrupt the vertical 
synchronization of the walkers.

To determine the minimum time required for each experimental 
run, we performed preliminary tests to estimate the characteristic 

autocorrelation time τi for the spin arrangement, which is computed 
through the autocorrelation function,

R t t t N( ) = ( = 0) ⋅ ( )/ , (6)S S

as the first time for which R(τi) = 0. Here, S(t) denotes the vector, with 
components Si(t), that characterizes the lattice spin arrangement at 
time t. The autocorrelation time provides a measure of the character-
istic time beyond which the collective order at t + τi is statistically inde-
pendent of the collective order at time t. Since τi fluctuates depending 
on the experimental realization, we define the length of the ‘statistically 
independent interval’ as

τ τ σ τ= ⟨ ⟩ + ( ), (7)i iI

where ⟨τi⟩ and σ(τi) denote, respectively, the average and standard 
deviation resulting from 10 different realizations of a given lattice con-
figuration. Our experiments show that τI is inversely related to the rate 
at which spins switch direction (higher switching rates lead to shorter 
τI), which in turn is a non-monotonic function of the forcing acceleration 
γ/γF. We thus recomputed τI as in equation (7) for each driving forcing 
in the range of interest (Fig. 1h). The largest τI,max ≈ 0.5 h (lowest switch-
ing rate) was observed at γ ≈ γc, the driving acceleration for which the 
signal-to-driving ratio for S(t) is maximal (Fig. 1c), and the emergent 
collective behaviour strongest (Fig. 1h). Based on this observation, we 
selected 1 h (~1,800 circulations for each drop) as the recording length 
for our experimental realizations, thus guaranteeing that the system 
has more than enough time to reach a steady state. This typical run 
duration also yielded an optimal frequency to measure γF before and 
after each realization.

Following this protocol, we recorded as many 1-h videos as needed 
to obtain a minimum of NI ≥ 8 statistically independent intervals for 
each γ/γF level. In some cases the number of independent intervals was 
as high as NI ≈ 50. For each independent interval we then computed its 
associated spin–spin correlation χj(t). The data reported in Fig. 1h cor-
respond to the resulting average, ⟨∑χj(t)/NI⟩, and standard deviation, 
σ(∑χj(t)/NI), of these time series. The same data-acquisition protocol 
was followed for all lattices discussed in the main text, including those 
involving system rotation. We note that exceptions were made to obtain 
Figs. 1d, 2a, 3a, 4b, for which we conducted longer experiments to bet-
ter illustrate the emergent collective phenomena.

Boundary conditions, ring curvature R, and lattice size N. Experi-
ments were performed to determine the effects of the boundary condi-
tions, lattice size N, and ring curvature R in 1D HSLs (Fig. 1a). To assess 
the effect of periodic versus non-periodic boundary conditions, we 
considered the antiferromagnetic configuration with N = 20 shown in 
the main text (Fig. 1), and repeated the experiment at γ/γF = 86% after 
plugging one of the submerged wells. We note that in the resulting 
non-periodic lattice with N = 19, the two end walkers were separated 
by a relatively large distance (2L > 7λF) by the thin layer (H = 1 mm) over 
which the waves dissipated quickly. Hence, the walkers at the ends did 
not interact with each other, as was checked by direct visualization 
of the wave field. Comparison of our experimental results revealed 
⟨χ(N = 19)⟩/⟨χ(N = 20)⟩ ≈ 1.05, which is well within the expected standard 
deviation, and so demonstrated a negligible effect of the boundary 
conditions. We also note that for 1D periodic lattices tuned for preferred 
antiferromagnetic order, it is important whether N is even or odd. An 
odd number of spins may lead to geometrical frustration effects9 that 
hinder the preferred collective order. To avoid such effects—the inves-
tigation of which is left for future studies—we selected even N for all 
experiments reported in the main text.

To assess the effect of lattice size, we compared experiments with 
N = 10 and N = 20, while keeping both L and R constant. Both sets of 
experiments led to preferred antiferromagnetic order, thus supporting 



our inference that the emergent order is not a finite-size effect. We also 
compared these results with those of a 1D straight lattice (R = ∞) with 
N = 8, where the same preferred order emerged. We may thus eliminate 
the curvature of the circular lattice from consideration as an important 
factor for the emergent collective behaviour. Finally, we also checked 
for finite-size effects in the 2D square lattices: experiments with N = 37 
and N = 49 resulted in the same collective order.

Theory
Rayleigh–Bessel oscillator model. To rationalize the emergent order 
in HSLs, we extend the modelling framework for pilot-wave dynamics 
introduced previously61. In the weak-acceleration limit, T|˙| /| | 1M ≪v v , 
these authors show that the trajectory of a walking droplet, x(t), may 
be described by the equation

t
m D

d
d

( ) + = , (8)w wv v F

where v ẋ=  is the droplet velocity, F an externally imposed force acting 
on the drop, Dw(|v|) the nonlinear drag, and mw the effective walker 
mass. In the low-speed limit, in which the wave decay time, TM, is much 
smaller than the time taken for the droplet to travel one Faraday wave-
length, TM ≪ λF/u0 (where u0 is the free walking speed of a droplet), one 
may further simplify equation (8) to a Rayleigh oscillator-type equa-
tion62, similar to that introduced in a previous work63, where the drop-
let trajectory is described by
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  Here, DR denotes the magnitude of the nonlinear Rayleigh-type 
drag, which drives the droplet towards its free walking speed, u0. The 
dependence of the model parameters mw, u0 and DR on the physical vari-
ables is summarized in Extended Data Table 1. Equation (9) adequately 
describes the motion of weakly accelerating, relatively low-speed drop-
lets. We note that both asymptotic limits are satisfied by orbiting drop-
lets in the regime γ ≤ γc, where TM ≈ 0.1 s. Although these limits are not 
strictly satisfied in the relatively short periods of time during which 
spin flips occur, our analysis will demonstrate that details of the spin 
flips are not essential to rationalize the emergent collective behaviour.

We consider N droplets self-propelling above an array of sub-
merged circular wells with centre-to-centre separation L. Equa-
tion (9) determines the trajectory of each droplet, which is defined 
by a two-component displacement vector xi(t), where i = 1, …, N. The 
force acting on each droplet may be decomposed into two components, 
F = Fw + Fi,j, where Fw represents the effective confining force exerted 
by the submerged well, and Fi,j the wave force exerted on droplet i by 
its nearest neighbouring droplet j. Motivated by experiments64, we 
assume that Fw is a central force that points towards the well’s centre.

As described in the main text, in the relatively low-memory regime 
(γ ≤ γc), the drops remain on circular trajectories, with a fixed orbital 
radius r. Focusing on finite 1D lattices for the sake of simplicity, we may 
thus express the droplet trajectory and velocity vectors as x t( )=i

r xr ϕ t i L r ϕ t r i L( cos ( ) + ( − 1) , sin ( )) = ˆ + ( − 1) ˆi i i      , and  t rϕ ϕ t˙ ( ) = ˙(− sin ( ),i i ix
θϕ t rϕcos ( )) = ˙ ^

i i i , respectively. Here, ̂ ir  and θ̂i denote the radial and azi-
muthal unit vectors for the ith spin with respect to the centre of its well, 
and x̂ the unit vector along the lattice centre line (Fig. 2e). Writing ̇ω ϕ=i i 
and substituting xi(t) and ẋ t( )i  into equation (9) yields the following equa-
tions for the normal and tangential force balances:
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We note that Fw only appears in the radial force balance, where it 
acts to select the orbital radius r. Since the experiments suggest that 
emergent order in HSLs is driven primarily by synchronization of the 
droplets’ relative orbital phase (Figs. 1f, 2c), we restrict our attention 
to the azimuthal force balance (equation (11)) and simply infer the 
value of r from our experiments. Thus, to rationalize the preferred 
mean phase differences, Δϕ±, in terms of the droplet coupling force, 
Fi,j, we may write equation (11) as a nonlinear differential equation for 
the evolution of each droplet’s angular frequency, ωi(t),

̇










F θ
ω

τ
ω
ω

ω
m r

=
1

1 − +
⋅ ˆ

, (12)i
i

i
i j i

2

0
2

,

w

where ω0 = u0/r is the preferred angular frequency for a given driving 
acceleration γ, as would arise for a single drop orbiting in isolation, 
and τ = mw/DR is the relaxation timescale (see Extended Data Table 1).

To complete our spin model, we must define the wave-mediated 
force exerted by droplet j on droplet i, Fi,j. The stroboscopic model of 
ref. 42 predicts that the wave field generated by the jth walker may be 
approximated by

x x x∫η t
A

T
J k s s( , ) = ( | − ( )|)e d , (13)j

t

j
t s T

F −∞ 0 F
−( − )/ M

where A, TF and TM are defined in Extended Data Table 1. Thus, the cou-
pling force may be expressed as
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  This expression was derived for droplets unperturbed by topog-
raphy and so does not incorporate the additional wave damping 
expected in the shallow inter-well regions65. Nevertheless, our visu-
alization of the wave field produced by a single droplet in the lattice 
yielded a waveform notably similar in form to that expected on the 
basis of equation (14) (Methods section ‘Wave coupling’). We also 
note that there is a relatively fast-propagating wavefront generated 
at impact35, which decays rapidly with distance and so has a negligible 
influence on droplet pair interactions when the drops are separated 
by more than approximately λF (refs. 66,67). Guided by previous studies 
and experimental evidence, we thus neglect this capillary wavefront 
and consider that the liquid layer between wells has a negligible influ-
ence of the form of the drops’ wave fields and so seek a simplification 
of equation (14) that yields insight into the mechanism responsible 
for the emergent order.

In the parameter regime of interest, γ ≤ γc, the wave memory time, 
TM < 0.1 s, is much smaller than the orbital period, 2π/ω0 ≈ 2 s. We may 
thus simplify equation (14) in the limit of TM ≪ 2π/ω0 to obtain
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  Substituting equation (15) into equation (12) yields a system of ODEs 
for each droplet interacting with its nearest neighbours in a spin lattice
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  Here, ℱ is the interaction force coefficient, and ∑j denotes the sum 
over nearest neighbours j = i ± 1. Owing to the form of the coupling 
force, we refer to this as the ‘Bessel model’, which predicts the emergent 
spin order and phase synchronization in terms of three parameters  
(τ, ω0, ℱ) that may be deduced from the system’s fluid properties, in 
addition to the lattice spacing, L, and the Faraday wavenumber, kF. 
Expressions for the parameters τ, ω0 and ℱ are provided in Extended 
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Data Table 1, and their dependence on γ/γF is presented in Supplemen-
tary Fig. 1. Finally, we note that investigating precisely the collective 
order emerging from excited spin states, such as trefoils arising for 
γ > γc (Fig. 1c), would require more involved models such as a full imple-
mentation of the stroboscopic model42, or the variable-topography 
model of a previous work68.

Generalized Kuramoto model. By making a series of further approxi-
mations to the form of the coupling in the Bessel model (equation (16)), 
we now demonstrate that the emergent collective order in HSLs is gov-
erned by a generalization of the classical Kuramoto model for coupled 
phase oscillators4. From equation (16), the force on droplet i due to the 
adjacent droplet (i + 1) is

J k t t
t t
t t
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  We first make the approximation that the orbital radius is small rela-
tive to the centre-to-centre lattice separation, r/L ≪ 1. This approxima-
tion is well satisfied in the experiments, where r ≤ 3 mm and L > 14 mm, 
so r/L ≤ 0.2. We can thus approximate the distance between the two 
droplets as |xi(ϕi) – xi+1(ϕi+1)| ≈ L + r(cosϕi+1 − cosϕi), and expand the 
azimuthal component of the wave-induced force:
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where (xi, yi) are the Cartesian coordinates for each drop relative to 
the well centre. Although this limit will not be satisfied by all solutions 
of equation (16), for the range of L considered in our experimental 
study, the droplets exhibit in-phase synchronization (Δϕ± ≈ 0; Figs. 1f, 
2c); consequently, the observed dynamics are expected to satisfy the 
approximation in equation (19).

Exploiting equation (19), we thus deduce that
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from which equation (18) indicates that
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  Noting that the first term in equation (22) is cancelled when we sum 
the contribution of the forces from the two neighbouring droplets, 
i − 1 and i + 1, we may now express the coupling force as the gradient of 
a potential U, yielding a reduced model for the spin lattice system as
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where the sum is only over nearest neighbours within the lattice. The 
generalized Kuramoto coupling potential, Ui,j, may be expressed as
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  We refer to this system as the ‘generalized Kuramoto’ (GK) model, and 
illustrate the dependence of the ratio β/α on lattice spacing, L, in Sup-
plementary Fig. 2. We note that the form of the potential U is prescribed 
only by the local wave curvature and gradient, through the signs and 
relative magnitudes of α and β. Consequently, the amplitude of the 
local wave field does not substantially alter the form of the potential, 
U, which further justifies the neglect of topography-induced wave 
damping. We note that our GK model (equation (23)) includes inertia, 
as do the Kuramoto-like models typically used to study synchroniza-
tion phenomena in power grids69,70.

Notably, we found that the GK model succeeds in rationalizing the 
emergent order even at intermediate values of lattice spacing, L, for 
which the approximation equation (19) is not necessarily satisfied. To 
understand this unforeseen success of the GK model, we compare the 
form of the Bessel coupling force (equation (16)) with that expected 
from the GK model (equation (23)) for all ϕi and ϕj and four representa-
tive lattice separations (Supplementary Fig. 3). In all four cases, we 
find that the GK coupling corresponds to the two fundamental Fourier 
modes of the Bessel coupling, which explains the agreement between 
the predictions of the Bessel and GK models over the range of lattice 
spacings of interest. For smaller values of L, we find that the agreement 
holds until the spacing becomes comparable to the orbital radius, 
L ≈ 2r. In the limit of rkF ≪ 1, when the orbital radius is much smaller than 
the Faraday wavelength, the approximation (equation (19)) is strictly 
satisfied. Finally, we note that the amplitude of the GK coupling force 
computed via the predictions (equations (25), (26)) is a factor of two 
larger than the amplitude of the dominant Fourier modes computed 
from the Bessel force (Supplementary Fig. 3). As discussed in Extended 
Data Fig. 5, we compensate for this overestimation in order to obtain 
the quantitative agreement between the experiments and the GK model 
(equation (23)).

Spin flips and wave coupling. Our theory indicates that, in the param-
eter regime considered in our experimental study, the fundamental 
mechanism responsible for the emergent collective order does not 
depend strongly on either the precise details of the spin flips or the 
small deformation of the walker wave field due to variations in bottom 
topography. Nevertheless, we detail these effects here for the sake of 
completeness.

Spin flips. Extended Data Fig. 2 (Supplementary Video 6) illustrates 
a typical spin flip event as observed in our experiments with the 1D 
antiferromagnetic HSL described in Fig. 1. Owing to transient rearrange-
ments from the random initial conditions, at some time t during this 
experimental run, three neighbouring spins happen to be rotating in 
the same direction (see Extended Data Fig. 2a). Since the lattice geom-
etry promotes antiferromagnetic order, this local arrangement is not a 
preferred state. The collective interactions are such that the trajectory 
of the middle walker then starts to become elliptical (see Extended 
Data Fig. 2b). The elongation of the ellipse continues until the walker 
executes quasi-rectilinear motion across the well centre (see Extended 
Data Fig. 2c). Subsequently, the process is reversed, the result being the 
walker rotating in the opposite direction (see Extended Data Fig. 2d). 
After the spin flip, which typically takes 5 ± 1 s, the three walkers rotate 
in the preferred antiferromagnetic configuration (see Extended Data 



Fig. 2e). When the collective order is strongest (γ/γF ≈ 86% in Fig. 1h), 
the duration of a flip, of the order of 5 s, is negligible relative to the 
characteristic flipping period, of the order of 5–10 min. At higher accel-
erations, when the walkers switch direction much more frequently and 
the coherent order is lost (γ/γF > 90% in Fig. 1h), the duration of the flips 
becomes comparable to the flipping period. We note that ferromage-
netic lattices, such as those shown in Fig. 2, undergo similar spin flips.

Wave coupling. A rough estimate of the extent to which the variable 
bottom topography will alter the form of the wave field relative to that 
predicted by the stroboscopic model (equation (13)) may be obtained 
by comparing the Faraday wavelengths given by the water-wave disper-
sion relation for the shallow λF

H and deep λF
h regions. As noted earlier 

in the experimental description, these wavelengths are only marginally 
different for our choice of parameters, specifically λ λ/ ≈ 1.05F

h
F
H . One 

thus expects that the walker wave field in our lattices will not be appre-
ciably different from that previously predicted42. Indeed, as shown in 
Extended Data Fig. 3a, b, direct visualization of waves generated by a 
single walker reveals a wave form comparable to that expected from a 
superposition of sub-harmonic zeroth-order Bessel functions, as in 
equation (13). We note that over the range of parameters considered 
in our study, no exotic Faraday patterns were excited, such as those 
arising in nonlinear regimes71,72 or excited by droplets walking in ellip-
tical corrals48.

To provide a quantitative characterization of the wave coupling, 
including the spatial decay36, we perform additional simulations with 
a previously developed model68, wherein changes in topography are 
incorporated through their influence on the local wave speed. We note 
that this model solves the wave problem explicitly, and has been bench-
marked against experiments in a number of settings involving walkers 
interacting with submerged topography37,73–75. In accordance with our 
experimental observations, we find that the simulated wave field has a 
form similar to that of a J0 Bessel function (see Extended Data Fig. 3c). By 
taking into consideration spatial damping, it has been demonstrated36 
that in the deep-fluid regime, the wave field generated by a bouncing 
drop located at xj may be approximated by

h A b J k K b(| − |) = 2 ( | − |)| − | (2 | − |) (27)j j j j0 F 1x x x x x x x x

where K1 is the modified Bessel function of the second kind. Our 
simulations indicate that the fitting parameters are A ≈ 15.4 μm and  
b ≈ 0.002 mm−2, which is roughly consistent with previous free-surface 
synthetic Schlieren experiments76. We note that the spatial damping 
included in equation (27) does not play a crucial role in rationalizing 
the mechanism responsible for the emergent collective order; thus, we 
can safely neglect its effects. Finally, we note that experiments support 
our assumption that the nearest-neighbour couplings are dominant: 
the waves become negligible before reaching the second-nearest wells.

Comparison to experiment. We proceed by comparing the results of 
our experimental study with the theoretical predictions of both the 
full wave coupling Bessel model (equation (16)), and the generalized 
Kuramoto model (equation (23)). Specifically, we characterize the 
dependence of the collective lattice order on both the well separa-
tion, L, and vibrational acceleration, γ, and demonstrate that the 
emergent orbital phase synchronization is determined by the form 
of the coupling force.

We compare the predictions of our theoretical models to the experi-
mental results through the average spin-correlation, ⟨χ⟩. In the simula-
tions, for every data point, we perform Nt independent trials of a given 
lattice. We initialize each simulation with random initial conditions 
(ϕ0, ω0) for each droplet, independently drawn from uniform distribu-
tions with ϕ0 ∈ [0, 2π] and ω0 ∈ [−3ω0/2, 3ω0/2] to ensure a large spread. 
From each independent simulation, we compute a spin correlation time 
series χn(t), for n = 1, …, Nt, as defined in equation (4). We then compute 
the average of the instantaneous spin correlations across all trials as

∑χ t
N

χ t( ) =
1

( ). (28)
n

N

n
t =1

t

We compute the final average spin correlation, ⟨χ⟩, by time-averaging 
over the final quarter of this time series, so as to eliminate any influence 
of the initial transient regime. In our simulations of equations (16) and 
(23), this transient period is generally <100 s. To guarantee robust sta-
tistics, we perform all simulations up to a time tmax ≈ 300–600 s. We 
note that, owing to the approximations made in our modelling of the 
wave form, the preferred collective order is attained more rapidly in 
simulations than experiments.

We perform numerical tests to ensure that our results are not affected 
by either an insufficient number of trials or finite-size effects. Our simu-
lations indicate that the collective behaviour becomes largely inde-
pendent of the number of trials for Nt = 200 (Supplementary Fig. 4a). 
Similarly, our exploration of the effect of lattice size on the spin cor-
relation (Supplementary Fig. 4b) reveals that the statistics become 
independent of the number of spins for N ≈ 150. We thus select Nt = 200 
and N = 150 for all subsequent simulations.

Varying lattice spacing. As demonstrated experimentally (Fig. 2), 
there exists a transition from antiferromagnetic to ferromagnetic order 
when the well separation, L, decreases from 17.7 to 13.2 mm. Continu-
ously varying L is extremely prohibitive experimentally; thus, we pro-
ceed to do so using simulations.

We computed the average spin correlation, ⟨χ⟩, in terms of the lattice 
spacing, L, via the Bessel model (equation (16)). For our simulations, 
we select a relaxation time of τ = 0.4 s, an angular velocity of ω0 = 3.3 s−1, 
and an interaction coefficient of ℱ = 70 s−2, values consistent with the 
experimental range γ ≤ γc (Supplementary Fig. 1). We prescribe the 
orbital radius to be r = 1.2 mm, which is close to the average observed 
experimentally with L = 13.2 mm. The Faraday wavelength in the simula-
tion is fixed at λF = 2π/kF = 4.95 mm. We vary the well-to-well separation 
L across one Faraday wavelength, between 13 and 18 mm.

We present the dependence of the time-averaged spin correlation, 
⟨χ⟩, on lattice spacing, L, in Extended Data Fig. 4a. Our results show 
that the preferred collective behaviour oscillates between regions of 
positive and negative spin correlation as the lattice separation is varied. 
To better characterize the emergent ferromagnetic and antiferromag-
netic order, we also compute the mean droplet phase difference, Δϕ± 
(see Extended Data Fig. 4b), which reveals that the collective lattice 
behaviour is dominated by not two but four synchronization modes 
(see Extended Data Fig. 4c, d).

In the first ferromagnetic region, denoted FM+, the model predicts 
that ⟨Δϕ±⟩ ≈ 0, indicating that neighbouring pairs of spins are on aver-
age in phase in the azimuthal direction, regardless of whether they 
co-rotate or counter-rotate. The bias towards ferromagnetic order 
(see Extended Data Fig. 4a) is thus associated with the dominance of 
the co-rotating synchronization mode over the counter-rotating mode 
(see Extended Data Fig. 4c, d). Similarly, in the antiferromagnetic region 
denoted by AFM+, we again observe a vanishing mean phase differ-
ence, ⟨Δϕ±⟩ ≈ 0, indicating in-phase orbital motion, but now the relative 
dominance of the two synchronization modes is reversed. By contrast, 
the ferromagnetic and antiferromagnetic regions denoted by FM− and 
AFM−, respectively, result from two different synchronization modes 
that are characterized by out-of-phase orbital motion, ⟨Δϕ±⟩ ≈ π (see 
Extended Data Fig. 4c, d). The relative dominance of these modes thus 
determines the bias towards positive or negative spin correlation (see 
Extended Data Fig. 4a).

The origins of these four forms of collective order are rationalized 
through the generalized Kuramoto model (equation (23)). By examin-
ing the dependence of the control parameters α and β, as defined in 
equations (25), (26), on lattice spacing L, we note that the four dynam-
ical modes are those that precisely minimize the reduced coupling 
potential U (equation (24)). Specifically, when α > 0, which happens 
when J k L″ ( ) > 00 F , corresponding to FM+ (see Extended Data Fig. 4a), 
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the first term of the coupling potential U strongly favours motion for 
which |xi − xj| is minimized. In-phase rotation is thus preferred, but this 
condition is equally satisfied by both co- and counter-rotating spins 
(see Extended Data Fig. 4c, d, column A). The observed bias towards 
ferromagnetic order thus comes from the minimization of the second 
term in U, which is determined by the sign of β, and so by the local slope 
J k L′ ( )0 F . In particular, β > 0 in the FM+ region (see Extended Data Fig. 4a), 

indicating that, between the two possible in-phase modes, the system 
will favour the co-rotating mode because it also minimizes |yi − yj| (see 
Extended Data Fig. 4c, d). The emergence of ferromagnetic order FM+ 
is thus rationalized. Similar arguments may provide rationale for the 
observed order in the remaining regions. For instance, as arises for 
FM+, α > 0 in AFM+ and so in-phase rotation is preferred. However, since 
β < 0, the system promotes counter-rotating spins as those now mini-
mize the potential U by maximizing |yi − yj|. We note the regions where 
no preferred collective order emerges (see Extended Data Fig. 4a) 
precisely correspond to the extrema and inflection points of J0(kFL), at 
which either α = 0 or β = 0. Finally, we note that simulations of the Bes-
sel model (equation (16)) with 50 × 50 lattices confirmed that a similar 
dependence of collective order on lattice spacing emerges for sub-
stantially larger 2D square lattices (see Extended Data Fig. 6a).

Varying interaction strength. In Extended Data Fig. 5, we compare 
the experimentally observed dependence of the average spin corre-
lation, ⟨χ⟩, on the bath acceleration, γ/γF, with the predictions based 
on both the Bessel model (equation (16)) and the generalized Kura-
moto model (equation (23)). For values of γ/γF just beyond the walking 
threshold, both models predict the relatively weak spin correlations 
associated with relatively weak coupling. As the coupling strength is 
increased progressively, both models predict the emergence of a more 
pronounced antiferromagnetic response, up to a critical acceleration 
γc, where min(χ) ≈ −0.4, in excellent agreement with the experiments. 
Beyond this optimal driving, the magnitude of the spin correlation 
decays rapidly, until the preferred collective order vanishes. Strictly 
speaking, the validity of our theoretical models is restricted to γ ≤ γc, 
where the droplet motion is confined to circular orbits. Nevertheless, 
both models capture the decay of the antiferromagnetic order beyond 
γc. Experimentally, such decay is related to the destabilization of cir-
cular orbits into trefoil-like trajectories (Fig. 1h) that in turn prompts 
chaotic switching in orbital direction. In both theoretical models, 
similar chaotic switching emerges as the coupling parameters, ℱ and 
α, β, are increased to values corresponding to γ > γc. Similar simula-
tions with both the Bessel (equation (16)) and generalized Kuramoto 
(equation (23)) models were conducted for a 50 × 50 lattice in order to 
confirm that the same collective order emerges in 2D square lattices 
for variable memory (see Extended Data Fig. 6d).

Bath rotation. We conclude by generalizing our theoretical framework 
to rationalize the transition from antiferromagnetic to ferromagnetic 
order induced by applying a constant rotation, Ω, to the vibrating bath 
(Fig. 3a–e).

We recall that the rotating bath surface is an equipotential; conse-
quently the radially outward centrifugal force on the drop is precisely 
balanced by the inward interfacial force resulting from the parabolic 
bath surface and so need not be considered henceforth8. The effect of 
bath rotation may thus be incorporated into our modelling through 
the addition of the Coriolis force, F Ω ẋm= − 2 ×c  (ref. 47), which acts in 
the inward radial direction for circular cyclonic/anticyclonic orbits. 
To correctly model the HLS dynamics in a rotating frame, we should 
thus include the radial force balance into our models. To proceed, we 
model the force exerted by the well in the low-memory regime by a 
confining radial potential of the form V(r) = kr4, so that Fw = −dV/drr̂, 
where r = |x| (ref. 64). We find that the fourth-order degree of the poten-
tial captures adequately the abrupt influence of topography at the well 
boundary. We select the strength of the potential, k, so that the predic-
tions for the free walking speed u0 and experimentally observed orbital 

radius r are consistent with our experimental observations in the 
absence of rotation (Fig. 1c).

Focusing on the wave-mediated droplet coupling Fi,j as approximated 
by the generalized Kuramoto force (equation (23)), we may thus write 
the 2D version of the Rayleigh oscillator equation (9), with an applied 
force F = Fc + Fw + Fi,j as
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  Noting that the orbital radius is now a variable ri(t), we may express 
the droplet position around the centre of the ith well in polar coordi-
nates as

t r t ϕ t ϕ t( ) = ( )(cos ( ), sin ( )). (30)i i i ix

  Since full resolution of the droplet’s dynamics in the presence of 
rotation is beyond the scope of the theory presented here, we simplify 
the equations to rationalize the observed behaviour. We thus neglect 
the contribution of ̇ri to the Rayleigh drag term, which is valid provided 
that ̇ ≪r r ωi i i

2 2 2, and the contribution of the Rayleigh drag term in the 
radial equation, which is valid provided that r τr ω| |i i i

2̇ ≪ . Since the drop-
let–droplet interaction primarily drives the phase synchronization 
between the droplets, we also neglect the wave-mediated interaction 
force from the radial force balance. Finally, we assume that the interac-
tion force does not vary with the orbital radius, so that α and β are held 
constant, which is valid provided the droplet trajectories do not devi-
ate substantially from circles. With these assumptions, we may then 
substitute equation (30) into equation (29) to yield
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  The numerical prediction of the model formed by equations (31) and 
(32) are compared with our experimental results in Fig. 3e, showing 
excellent agreement given the level of theory reduction. Simulations 
are performed with N = 150 spins and Nt = 200 independent trials. We 
fix τ = 0.1 s, u0 = 6 mm s−1, r = 1.8 mm, k = 4.34 mm−2 s−2, α = 10 s−2 and 
β = −1.5 s−2. We then vary the rotation rate, Ω, over the range 0 < Ω < 0.7 s−1 
as in the experiments. Our results reveal a dependence of the aver-
age spin correlation, ⟨χ⟩, on the rotation rate, Ω, very similar to that 
observed in the laboratory.

Tunability
HSLs also offer the opportunity to investigate more exotic forms of 
collective behaviour and frustration effects induced by wave-mediated 
interactions. Here, we provide several proof-of-concept experiments 
and simulations in order to illustrate their potential for future research.

As discussed in Methods section ‘Stationary bath’, it is possible 
to deduce the vertical phase of the droplets by observing the light 
reflected from the upper side of the droplets, which intensifies 
when the droplets deform during impact. Since the walkers bounce 
sub-harmonically with respect to the bath vibration, drops may bounce 
vertically in-phase or out-of-phase with respect to their neighbours 
(see Extended Data Fig. 7a). Vertically out-of-phase walkers are cou-
pled through a wave field equal to that of in-phase walkers but with the 
opposite sign (see Extended Data Fig. 4). Consequently, for example, 
the emergent order of an HSL, whose lattice spacing promotes orbital 
in-phase antiferromagnetic order AFM+ for vertically in-phase walkers, 
will shift to out-of-phase antiferromagnetic order AFM− for vertically 
out-of-phase walkers (see Extended Data Fig. 7a). An HSL with walkers 
with random vertical phases will thus produce an antiferromagnetic 



state with competing orbital synchronization that effects the emergent 
spin correlation (see Extended Data Fig. 7b). Other forms of frustration 
can be investigated by changing the lattice geometry in 2D. For example, 
a triangular lattice (see Extended Data Fig. 7c) in which the spacing is 
tuned to promote antiferromagnetic order leads to degenerate ground 
states, the investigation of which is expected to yield insights into how 
wave-coupled spin lattices respond to geometric frustration77.

We also perform simulations using a previously published model68 
that solves the wave field explicitly, in order to demonstrate how altera-
tions of the basic experimental setup might allow one to tailor the 
coupling between spins and so study more exotic collective phenom-
ena. We note that in these simulations, all the walkers are bouncing 
vertically in phase. We first confirm that orbital in-phase ferromag-
netic FM+ and antiferromagnetic AFM+ orders are reproduced with 
the model68 (see Extended Data Fig. 8). We proceed by simulating a 
lattice where the horizontal spacing promotes FM+, while the vertical 
spacing promotes AFM+ (see Extended Data Fig. 9a, left). Drops along 
the horizontal lines are thus rotating in phase, but their direction alter-
nates vertically in an antiferromagnetic fashion (see Extended Data 
Fig. 9a, centre and right).

Next, we take as reference the ferromagnetic HSL (see Extended 
Data Fig. 8a) and repeat the simulation with a lattice where the centre 
of each well has been shifted by a random distance ±ε in the horizontal 
and vertical directions (see Extended Data Fig. 9b, left). As the degree 
of randomness increases, the walkers’ trajectories become less regular; 
thus, it becomes more difficult for the walkers to maintain precise 
in-phase orbital motion (see Extended Data Fig. 9b, centre and right).

In our third demonstration, with the same FM+ as the reference (see 
Extended Data Fig. 8a), we alternate the sizes of the bouncing droplets, 
thereby mixing two ‘species of spins’ with different frequency and 
inertia (see Extended Data Fig. 9c, left). Although the drop size does 
not change the preferred mode of synchronization, which is dictated 
by the lattice spacing, the different rotation frequencies lead to frustra-
tion. Notably, the drops adjust their orbital radii (see Extended Data 
Fig. 9c, centre) in order to match their rotation frequencies, as can be 
deduced from the equal slope of the ϕ(t) signals (see Extended Data 
Fig. 9c, right).

In our fourth demonstration, we reduce the local liquid depth along 
alternating columns of a FM+ lattice geometry (see Extended Data 
Fig. 9d, left). As a result, the waves above the new submerged barriers 
dissipate waves more effectively (see Extended Data Fig. 9d, centre). 
Walkers are thus subjected to lateral couplings of different strengths, 
which leads to pairs whose phase is either strongly or weakly correlated 
(see Extended Data Fig. 9d, right), and so to the possibility of exploring 
SSH-type couplings as studied in topological insulators78. We also note 
that the driving frequency can be used to dynamically tune the wave-
length, range, and amplitude of the oscillatory coupling. Moreover, one 
might superimpose random fluctuations on the vibrational driving in 
order to study the effects of imposed white or coloured noise.

HSLs offer the opportunity to explore other potentially fruitful direc-
tions. One of them is the analysis of the collective order emerging from 
higher excited spin states such as trefoils and lemniscates44, which 
emerge with larger well diameters64, and at higher driving acceleration 
(Fig. 1c). Notably, the accompanying theoretical rationalization would 
require more involved models, such as a full implementation of the 
stroboscopic model42 or the variable-topography model68. Similarly, 
the liquid depth, lattice geometry, and vibrational acceleration could 
be tuned to study the effects of longer-range oscillatory couplings 
beyond the nearest-neighbour interactions considered in this study, 
which might lead to more exotic dynamical states. HSLs thus offer the 
opportunity to investigate macroscopic dynamics analogous to those 
involving the oscillatory Ruderman–Kittel–Kasuya–Yosida (RKKY)38 
electronic spin coupling. Finally, investigating the similarities and 
differences between the collective synchronization arising in HSLs and 
other active systems might also prove fruitful. For example, it is known 

that rotating vortices in reaction–diffusion systems may be coupled 
by nonlinear spiral waves79–82.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.
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Extended Data Fig. 1 | Schematic of the experimental set-up. The test 
section was mounted on an optical table and vibrated vertically by an 
electromagnetic shaker. The shaker was connected to the bath by a thin steel 
rod coupled with a linear air bearing. The forcing acceleration was monitored 

by two piezoelectric accelerometers. The bath was enclosed within a 
transparent acrylic chamber to ensure that ambient air currents did not affect 
the experiments. A d.c. motor housed inside the hollow air bearing enabled 
system rotation.
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Extended Data Fig. 2 | Experimental spin flips. a−e, Snapshots at different 
times illustrate a typical spin-flip event arising in a 1D spin lattice 
(Supplementary Video 6). At each time, the panels at left are colour-coded 
according to the instantaneous spin Si (same colour map as in Fig. 1d), while 
those on the right depict the recent walker trajectories, colour-coded 
according to the local speed. Perturbed by the wave fields emitted by its 

neighbours, the middle walker initially follows an elliptical path. The length of 
the minor axis decreases until the walker trajectory essentially becomes a 
straight line across the well centre. Subsequently, the process is reversed, 
resulting in the walker rotating in the opposite sense. The three walkers shown 
are part of the 1D antiferromagnetic lattice described in Fig. 1h with 
γ/γF = 86.0%.
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Extended Data Fig. 3 | Wave coupling. a, Experimental visualization of the 
wave field generated by a single walker in a 1D lattice with the same geometry as 
in Fig. 1h and γ/γF = 92.0%. The submerged wells can be identified as the regions 
with a different shade of grey. b, Superposition of the wave field shown in a and 
the zeros of the drop-centred Bessel function ‐J k xx xx( | |)0 F i . c, Wave field of a 

bouncer computed with the theoretical model developed previously68 for 
walkers over variable topography. The bouncer is located at (x, y) = (3D/8, 0) in a 
2D square lattice with the same well diameter D and centre-to-centre separation 
L as in a and γ/γF = 88.0%. Solid blue lines denote the submerged wells and 
dashed lines the zeros of a Bessel function J0 centred at the drop position.
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difference, ⟨Δϕ⟩ (b) on the lattice spacing, L, as predicted by the Bessel model 
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corresponding sections (A–D) in a, b.
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Extended Data Fig. 5 | Emergent order for varying bath acceleration. 
Comparison of the experimentally observed average spin correlation, ⟨χ⟩, with 
the predictions of the Bessel model (equation (16)) and the generalized 
Kuramoto model (equation (23)). Solid lines are fits resulting from smoothing 
the piecewise linear plot given by connecting the points. Bessel model 
parameters: L = 17.7 mm, r = 1.8 mm, λF = 2π/kF = 5.1 mm. The interaction 
parameter ℱ is varied across the range 70 < ℱ < 130 s−2 and transformed back to 
γ/γF using the relation from Extended Data Table 1. To simplify the simulations, 
we fix the relaxation time to be τ = 0.1 s and the natural angular frequency to be 
ω0 = 3.3 s−1, values consistent with experimental observation (Fig. 1c). The 
effective walker mass is set to mw = 1.65m, in line with prior work61. GK model 
parameters: α is varied over the range 8.5 < α < 15 s−2, while maintaining β < 0 and 
a constant ratio |β/α| = 0.3. By dividing the expressions for α and β in 
equations (25), (26) by a factor of two, in accordance with the mismatch 
between the GK and Bessel models discussed in Supplementary Fig. 3, the 
minimum ⟨χ⟩ predicted by the GK model emerged in the vicinity of γc.



Article

0.2

 a
ve

. s
p

in
 c

or
r.

 <

-0.2

0

lattice spacing, L (mm)
17 18 19

a

b

c

b c

L = 17.1 mm

L = 18.5 mm

76 78 80 82 84

-0.3

-0.4

-0.2

-0.1

0

bath acceleration F (%)

 a
ve

. s
p

in
 c

or
r.

 <

d
Bessel model

Bessel model
GK model

Extended Data Fig. 6 | Emergent order in large 2D square lattices. 
Simulations of the Bessel model (equation (16)) and the generalized Kuramoto 
model (equation (23)) for a 50 × 50 square lattice demonstrate the emergence 
of antiferromagnetic and ferromagnetic order in 2D for various lattice spacings 
and bath accelerations. a, The lattice spacing determines the emergent 
antiferromagnetic (ADM+) or ferromagnetic (FM+) order in a manner predicted 
by our reduced theory (equation (24)). b, c, Specifically, preferred in-phase 
rotation between neighbouring pairs can be clearly observed in the 
antiferromagnetic AFM+ (b), and ferromagnetic FM+ (c) regimes. We note that b 
and c correspond to simulations of the Bessel model with the spacings 

indicated on a. d, The emergent in-phase antiferromagnetic order (AFM+) as a 
function of bath acceleration. Bessel model parameters in a: τ = 0.1 s, ℱ = 72 s−2, 
16.8 ≤ L ≤ 19 mm, ω0 = 3.3 s−1, and λF = 4.95 mm. Bessel model parameters in d are 
the same as in a, but with L = 17.1 mm and the interaction parameter varies 
across the range 65 ≤ ℱ ≤ 85 s−2, which is transformed back to γ/γF using the 
relation from Extended Data Table 1. GK model parameters in d: α is varied over 
the range 9.5 < α < 13 s−2 while maintaining β < 0 and a constant ratio |β/α| = 0.07, 
τ = 0.2 s and ω0 = 3.3 s−1. In all cases, each data point results from averaging 50 
simulations of 600 s each, to ensure statistical significance.
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Extended Data Fig. 7 | Emergent order for different vertical bouncing 
synchronizations and lattice geometries. a, Oblique view of a 2D spin lattice 
where the walker in the centre is bouncing vertically in-phase and out-of-phase 
with its left and right neighbours, respectively. b, Average spin correlation for 
lattices with the same geometry as those described in Fig. 1 when the walkers all 
bounce in phase (blue, result presented in text), out of phase (green), or have 
randomly distributed bouncing phases (red). Vertically in-phase pairs promote 
in-phase orbital antiferromagnetic order (AFM+), whereas vertically 

out-of-phase pairs promote out-of-phase orbital antiferromagnetic order 
(AFM−). A random distribution of vertical phases thus leads to competing 
orbital synchronization modes, which has an effect on the emergent spin 
correlation. Solid lines are fits resulting from smoothing the piecewise linear 
plot given by connecting the points. c, Triangular HSLs with a lattice spacing 
tuned to promote antiferromagnetic order can be used to investigate 
frustration effects.
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potential for future research of HSLs. Left, schematic; middle, wave field and 
drop trajectories; and right, orbital phase evolution. a, An HSL tuned to 
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Extended Data Table 1 | Model parameters and physical variables for HSLs

Variable Description
σ, µ, ρ, ν = µ/ρ, νe, µa Liquid surface tension, dynamic viscosity, density, kinematic viscosity,

effective kinematic viscosity, air viscosity

m, Dd, Rd Droplet mass, droplet diameter, droplet radius

D, L, r Well diameter, center-center separation, orbital radius

γ, f Bath forcing acceleration, frequency

kF , TF = 2/f , γF Faraday wavenumber, period and threshold

TD = (νek
2
F )−1, TM = TD

(1−γ/γF ) Viscous decay time, wave-decay memory-time [36]

C = 0.17, D = Cmg ρRd

σ + 6πRdµa Drag coefficient, time-averaged horizontal drag coefficient [36]

F = νeTF

2π
(mgk2

F Rd)2

3σk2
F +ρg

sin Φ, sin Φ Wave-force coefficient, phase parameter [36]

mw = m 1 + FkF T 2
M

2m Effective walker mass

DR = D
FkF T 2

M

2TF D − 1 , τ = mw

DR
Rayleigh-drag strength, Relaxation time

u2
0 = 8

3k2
F T 2

M

FkF T 2
M

2TF D − 1 , ω0 = u0
r Free walking speed, angular velocity

F = FTM

TF mwr Interaction force coefficient
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