
A review of the theoretical modeling of walking droplets: Toward a generalized pilot-
wave framework
S. E. Turton, M. M. P. Couchman, and J. W. M. Bush

Citation: Chaos 28, 096111 (2018); doi: 10.1063/1.5032221
View online: https://doi.org/10.1063/1.5032221
View Table of Contents: http://aip.scitation.org/toc/cha/28/9
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1908776651/x01/AIP-PT/Chaos_ArticleDL_0618/Chaos_1640x440Banner_2-18.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Turton%2C+S+E
http://aip.scitation.org/author/Couchman%2C+M+M+P
http://aip.scitation.org/author/Bush%2C+J+W+M
/loi/cha
https://doi.org/10.1063/1.5032221
http://aip.scitation.org/toc/cha/28/9
http://aip.scitation.org/publisher/


CHAOS 28, 096111 (2018)

A review of the theoretical modeling of walking droplets: Toward a
generalized pilot-wave framework

S. E. Turton, M. M. P. Couchman, and J. W. M. Busha)

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 3 April 2018; accepted 3 July 2018; published online 20 September 2018)

The walking droplet system has extended the range of classical systems to include several features
previously thought to be exclusive to quantum systems. We review the hierarchy of analytic models
that have been developed, on the basis of various simplifying assumptions, to describe droplets walk-
ing on a vibrating fluid bath. Particular attention is given to detailing their successes and failures in
various settings. Finally, we present a theoretical model that may be adopted to explore a more gen-
eralized pilot-wave framework capable of further extending the phenomenological range of classical
pilot-wave systems beyond that achievable in the laboratory. Published by AIP Publishing. https://
doi.org/10.1063/1.5032221

The surface of a vertically vibrated bath goes unstable to
a pattern of standing waves when the vertical acceleration
of the bath exceeds a critical value, known as the Fara-
day threshold. Below the Faraday threshold, a millimetric
droplet may bounce on the surface of the bath indefinitely,
provided a thin air layer is maintained between the drop
and the bath during impact. In a small parameter regime
of vibration frequencies and droplet sizes, this bouncing
state may go unstable to a walking state in which the
droplet is propelled by its underlying wavefield. We here
review the hierarchy of analytic models of increasing com-
plexity that have been developed and proven sufficient
for rationalizing various walker behaviors. We further
discuss how these models may be adapted in order to
explore a more generalized pilot-wave framework capable
of achieving quantum-like behavior beyond that accessible
with the hydrodynamic pilot-wave system.

I. INTRODUCTION

The surface of a fluid bath vibrating with vertical accel-
eration γ (t) = γ sin 2π ft goes unstable to a pattern of sub-
harmonic standing waves when the forcing acceleration is
increased beyond the Faraday threshold, γ > γF .1,2 Below the
Faraday threshold, a droplet may bounce indefinitely on the
surface of the fluid bath, provided an air layer is maintained
between the drop and the bath during impact.3 Coalescence
will occur for forcing amplitudes γ below a critical bounc-
ing threshold γB, while indefinite bouncing will occur for
γ > γB.4 The form of the drop’s vertical motion changes as γ

is increased. Different bouncing states are denoted by (m, n),
where m/f is the total period of the bouncing motion, during
which the droplet impacts the fluid n times.5

Just above the bouncing threshold, the droplet bounces
with the same period as the bath’s oscillation, in a (1, 1) state.
As the amplitude of the vibration is increased progressively,
a bifurcation occurs, giving rise first to a (2,2) bouncer. As
the amplitude is increased yet further, and for a certain range
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of drop sizes, the drop may settle into a fully period-doubled
(2,1) bouncing state, wherein the drop impacts the bath pre-
cisely once every two driving periods. The vertical motion of
the drop is then in resonance with the subharmonic Faraday
wave field, leading to a significant increase in the amplitude
of the surface waves generated. The transitions between the
various bouncing modes were first reported by Protière et al.6

and Eddi et al.7 Their observations were then rationalized the-
oretically and extended to a wider range of system parameters
by Moláček and Bush8 and Wind-Willassen et al.9

As the vibration amplitude approaches the walking
threshold, γW , the bouncing state is destabilized by the under-
lying wavefield, causing the droplet to be propelled horizon-
tally in a walking state characterized by rectilinear motion at
a constant speed (Fig. 1).10 The drop’s free walking speed
is determined by a balance between the propulsive wave
force that is proportional to the gradient of the wavefield,
∇h, beneath the drop, and a drag force that is linear in the
drop speed. This force balance was first discussed by Protière
et al.,6 who wrote a trajectory equation that allowed them to
rationalize a bouncing to walking transition. Their trajectory
equation was later revisited and further developed by Moláček
and Bush,11 who gave explicit forms for both the drag term
and the wave force in terms of the fluid parameters.

The walker system admits a range of complex dynam-
ical phenomena, many of which were reviewed by Bush.12

The dynamics of a single droplet bouncing in the (2,1) mode
may be understood using relatively simple models, since it is
only necessary to characterize the wave field in the immediate
vicinity of the drop. However, when multiple walkers inter-
act, it is necessary to have a more complete wave model that
captures both the local wave properties and its far field form.
The interactions of multiple walkers (Fig. 2) may induce sub-
stantial variations in the vertical dynamics of the droplets, an
effect that has been incorporated into several recent studies of
droplet pair interactions.13–15 Although the wave form gener-
ated by drop impact is well approximated by a linear wave,16

the coupling between the vertical bouncing dynamics and the
wave field is a complex nonlinear problem, which has only
recently been addressed systematically.17,24,25
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In Sec. II, we review the various models that have been
developed for the drop’s vertical and horizontal motion. In
Sec. III, we discuss the hierarchy of wave models that have
been developed to account for various dynamical phenom-
ena observed for both single droplets and multiple interacting
droplets. In Sec. IV, we review recent modeling attempts to
describe the interaction of walkers and submerged barriers,
which arise in a number of hydrodynamic quantum analogs.
Finally, in Sec. V, we present a generalized pilot-wave frame-
work that may be adopted in exploring this new class of
dynamical systems.

II. DROP DYNAMICS

A. Vertical dynamics

Beyond the bouncing threshold, γ > γB, the drop
bounces indefinitely on the surface of the bath. The bounc-
ing behavior was characterized experimentally by Protière
et al.,6 who presented a regime diagram of the various bounc-
ing modes observed for 50 cSt oil, followed by Eddi et al.7

who considered 20 cSt oil. In the bouncing regime, the bath
and drop never come into contact and are always separated
by a thin air layer.4 In order to understand the vertical motion
of the droplet, a hierarchy of models have been developed.
A bouncing droplet typically has a diameter of approximately
1 mm; thus, curvature pressure dominates hydrostatic pressure
in its contribution to the reaction force applied by the bath
during impact. In order to remove the complications associ-
ated with the influence of the bath inertia, Gilet and Bush5,20

investigated droplets bouncing on a soap film. They found that
as the film distorts during impact, it reacts to the drop like a
spring, exerting a force that increases linearly with intrusion
depth for small deformations of the film, the spring constant
being linearly proportional to the surface tension σ . We note
that the low energy impact of small drops on superhydropho-
bic surfaces may also be described in terms of a linear spring
owing to the form of the increase of surface energy with drop
distortion.21,22

Moláček and Bush8 investigated the use of a linear spring
model to characterize the interactions between a drop and a
vibrating fluid bath. Consider a droplet of mass m bouncing
on the surface of a bath vibrating with vertical acceleration
γ (t) = γ sin ωt. Suppose further that there is an underlying
wavefield, whose height directly beneath the drop is given by
a function h(t). The height of the fluid surface beneath the
drop is a(t) = − γ

ω2 sin ωt + h(t), which is a superposition of
the shaking of the bath and the underlying wavefield. One then
transforms into a reference frame in which the surface of the
bath beneath the drop is stationary so that the vertical position
of the drop is denoted by Z(t). The origin Z = 0 is defined as
the point when the drop’s center of mass is one radius R above
the equilibrium surface of the bath. Moláček and Bush8 then
used a linear spring model of the form:

m
d2Z

dt2
+ H(−Z)

(
D

dZ

dt
+ CZ

)
= −mg∗(t), (1)

where g∗(t) = g + d2a
dt2

is an effective gravity that incorpo-
rates the influence of the vibrating frame of reference and

FIG. 1. As the bath acceleration approaches the walking threshold, γW ,
(a) a bouncer will go unstable to lateral motion, transforming into (b) a walker.
The bouncing to walking transition can be rationalized using relatively sim-
ple wave models,6,11,18,19 since it is only necessary to characterize the wave
field in the immediate vicinity of the drop.

the underlying wavefield and H(x) is the Heaviside function.
D, the effective damping constant, and C, the spring con-
stant, are the fitting parameters, whose values were inferred
by measuring the contact time and coefficient of restitution of
drop impacts in the parameter regime of interest. One expects
the linear spring model to break down when inertial forces
become comparable to the effects of surface tension, i.e.,
when We = ρRV 2/σ � 1, where V is the impact speed of
the droplet. Terwagne et al.23 described the droplet-bath sys-
tem in terms of two masses coupled by a damped spring and
captured transitions between bouncing modes reminiscent of
those observed experimentally.

The linear spring model gives an adequate description of
the various bouncing transitions that may occur as the forc-
ing amplitude of the bath is varied. However, Moláček and
Bush8 found that unrealistic values of C and D were required
in order to achieve an acceptable fit with experiments over
the entire parameter regime considered. This motivated the
authors to adapt their quasi-static model of drop impact on a
rigid substrate22 to derive a logarithmic spring model that was
found to describe more satisfactorily the effect of bath and
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drop deformations on the vertical dynamics. The logarithmic
spring has been adopted by Milewski et al.24 in their rela-
tively comprehensive numerical model of the walker system,
as was used by Galeano-Rios et al.60 to rationalize the self-
propulsion of unequal droplet pairs moving along their line of
centers in the so-called ratcheting mode.7

The most recent model for the vertical dynamics was
developed by Galeano-Rios et al.25 The authors model the
impact of a droplet on the surface of a fluid bath by cou-
pling the free-surface Navier-Stokes equations to the motion
of a hydrophobic sphere, whose contact area with the bath
is updated dynamically. Their approach allows them to elim-
inate fitting parameters from their model for the vertical
dynamics and so obtain a fully predictive model for the tran-
sitions between the wide variety of bouncing states reported
by Wind-Willassen et al.9

In order to couple the vertical dynamics to the wave form,
it is necessary to have a model for the waves, h(t), beneath
the droplet. For non-resonant bouncers, this wavefield has a
sufficiently small amplitude that its influence on the bounc-
ing dynamics may be negligible.8,11 However, for bouncers
and walkers in the resonant (2,1)-mode, the amplitude of this
wavefield is significantly larger, resulting in a complex cou-
pling between the vertical dynamics and the wave form. The
effects of this coupling were found to be negligible in early
studies of single walkers,18,26,27 but more recent studies17

have shown a significant effect of variations in the vertical
dynamics for interacting droplets. The manner in which such
variations may be treated will be detailed in Sec. III.

B. Horizontal dynamics

Consider the trajectory of a drop of mass, m, bounc-
ing periodically at exactly twice the driving period of the
bath. Provided the drop is sufficiently small relative to the
wavelength of its Faraday wave field, the drop may be approx-
imated as a point particle following a trajectory xp(t) =
(xp(t), yp(t)) on the surface of the bath. The drop’s horizon-
tal motion is driven by a propulsive wave force and resisted
by drop inertia and drag forces induced during impact and
flight. This horizontal force balance was first modeled theo-
retically by Protière et al.,6 who considered a one-dimensional
trajectory equation of the form:

mẍp + f V ẋp = Fb sin

(
2π ẋp

Vϕ
F

)
. (2)

This equation describes the strobed dynamics, meaning that
the forces have been averaged over a period of the drop’s ver-
tical motion. The dominant drag was assumed to arise from
the shear drag generated by the thin air layer created during
impact and so to scale as f V ∼ (μGs/hf )(τ/TF), where μG is
the air viscosity, s is the approximate area of contact, and hf is
the approximate air layer thickness. Fb ∼ mγ (A/λF)(τ/TF)

was taken to be the effective force on the drop due to the
inclined wave field, where A is the wave amplitude and τ

is the contact time between the drop and the bath. Protière
et al. estimated the local slope of the surface in terms of the
ratio of the propagation speed of the drop, ẋp, and the phase
speed of the waves, VF , in which case the force exerted by the

wave field on the drop is proportional to sin
(

2π ẋp

Vϕ
F

)
. By vary-

ing γ , and thus Fb, this model captures a key feature of the
system, namely, a bouncing to walking transition. However,
the wave force in this model does not depend on the history
of the drop’s horizontal motion, preventing it from capturing
more complex dynamical states reliant on the memory of the
system on the droplet’s past trajectory.

The horizontal dynamics of a bouncing drop were also
considered by Shirokoff.28 His trajectory equation incorpo-
rated a linear drag and a wave forcing proportional to the
gradient of the wave field. He assumed that the impacts could
be treated as instantaneous and derived the wave form from
the linearized capillary-gravity wave equation. However, he
neglects the effects of the accelerating frame of reference in
the modeling of the wave field and so could not deduce the
dependence of the wave amplitude on the forcing acceleration
of the bath, γ . As a result, this model contained several fitting
parameters whose values were not prescribed by experiments.

The trajectory equation was revisited by Moláček and
Bush.11 They found that the dominant contribution to the drag
comes from the momentum transfer between the drop and the
bath during impact and from the Stokes drag imparted by the
air during flight, while the lateral force component is propor-
tional to the gradient of the wavefield, ∇h(xp, t), at the drop
location. This leads to a trajectory equation of the form:

mẍp + D(t)ẋp = −F(t)∇h(xp, t), (3)

where m is the mass of the drop. D(t) = C
√

ρR/σF(t) +
6πRμa is the time-dependent drag, whose first term mod-
els the influence of momentum transfer between the droplet
and the bath during impact, and whose second term is
an approximation to the air drag induced during flight.
F(t) = mZ̈ + mg∗(t) is the normal force exerted on the drop
during contact, which may be calculated from one of the
spring models discussed in Sec. II A. Moláček and Bush11

pointed out that in order for the drop to bounce indefinitely,
it is necessary for

∫ TF
0 F(τ ) dτ = mgTF so that the average

reaction force of the bath balances the weight of the drop.
After determining the full temporal dependence of the drag
and wave force in (3), Moláček and Bush restricted attention
to resonant (2, 1) bouncers, and averaged the full trajectory
equation over the bouncing period, to obtain the trajectory
equation:

mẍp + D̄ẋp = −F(t)∇h(xp, t), (4)

where D̄ = 1
TF

∫ TF
0 D(t) dt = Cmg

√
ρR/σ + 6πRμa. C is

a fitting parameter with tight bounds, 0.17 < C < 0.33,
deduced experimentally by Moláček and Bush11 through con-
sideration of drop impacts in the parameter regime of interest.
Provided F(t) is known, the vertical bouncing dynamics may
be eliminated from consideration, and this time-averaged tra-
jectory equation describes the mean horizontal dynamics,
which may be viewed experimentally by strobing the system
at the Faraday frequency. It is thus referred to as the strobed
trajectory equation.
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III. WAVE MODELS

The wave forms generated by impacts on a fluid bath have
been examined experimentally in various studies. Eddi et al.19

showed experimentally that a sphere impact on a vibrating
bath produces an outward propagating capillary wave that
triggers a pattern of standing waves in its wake. This obser-
vation motivated the theoretical description of the wave form
as a sum of standing waves produced at each impact loca-
tion. They also studied the wave generated by a walking
droplet and observed that the wave form has a clear Doppler
effect due to the interference of waves generated at successive
impacts. Damiano et al.16 applied the free-surface Schlieren
technique of Moisy et al.29 in an experimental study of the
wave forms excited by bouncing drops. By placing a pattern
of random dots at the bottom of the bath, one then measures
the refraction of the dots due to the topography of the liquid
surface in order to reconstruct the form of the surface waves
using a digital image correlation algorithm. Damiano et al.16

used this technique to examine the spatial decay of the waves
generated by a bouncing drop and measured the motion of the
radially propagating capillary waves generated at impact.

The models for both the vertical (1) and horizontal
dynamics (4) require an accurate description of the underlying
wavefield, h(x, t). Consequently, in order to rationalize phe-
nomena such as the transition between bouncing and walking,
a hierarchy of wave models has been developed. In all ana-
lytic models of the wavefield, it is assumed that the drop is
in a (2, 1) mode so that it is bouncing in resonance with the
subharmonic Faraday wave.

Guided by their experimental observations, Eddi et al.19

proposed a phenomenological model for the wavefield. The
wave after N bounces at impact locations xn was written
as a linear superposition of circular waves with the Faraday
wavenumber kF :

h(x, tN ) =
N−1∑

n=−∞

Åe− |x−xn|
δ

|x − xn|1/2
e− tN −tn

τ cos (kF |x − xn| + φ).

(5)

The waves decay exponentially in space over a length-scale
δ that was determined experimentally. The waves decay in
time over a time scale τ = MeTF , where Me is a dimen-
sionless memory parameter, which prescribes the proximity
to the Faraday threshold, Me ∝ (1 − γ /γF)−1. As shown in
the Appendix, this temporal damping rate may be obtained
asymptotically by considering the damped Mathieu equation
close to the onset of instability. The wave amplitude Å is
effectively a free parameter, since this wave model does not
account for the forcing from the drop. Notably, the wave
form (5) is singular at the origin and thus cannot be used
to rationalize the bouncing to walking transition. Nonethe-
less, it captured the essential features of the walker wave
form in the far field and introduced the important concept
of the memory in determining the influence of the droplet’s
past on its present. This waveform has been used in conjunc-
tion with a discrete iterative model, developed by Emmanuel
Fort, in which the horizontal momentum transfer between
the drop and the bath is calculated at each impact from

the droplet’s speed and the slope of the wave surface. This
iterative model has been used to capture a number of walker
behaviors, including single-particle diffraction,30 orbits in a
rotating frame31 and harmonic potential,32 and the so-called
promenading mode, wherein two droplets walk side by side
while oscillating laterally along their line of centers.33 The
details of this model are provided in Appendix A of Labousse
et al.34 and Appendix A of Borgeshi et al.33

Moláček and Bush11 developed from first principles an
improved expression for the wave form, which coupled the
vertical dynamics to the wave amplitude beneath the drop.
The wave form was expressed in terms of a linear combination
of the waves generated at successive impacts, but with a spa-
tial dependence proportional to a zeroth order Bessel function
of the first kind:

h(x, t) =
	t/TF
∑
n=−∞

ÃS cos ωt
2√

t − nTF
e− t−nTF

MeTF J0(kF |x − xn|). (6)

Although this expression does not contain the exponential
spatial damping factor of Eq. (5) important in the far field, it
is regular at the origin and so may be used in conjunction with
the strobed trajectory equation (4) to rationalize the bounc-
ing to walking transition. The wave amplitude Ã was given
in terms of known fluid parameters. The memory parameter
Me is proportional to the ratio of the viscous decay time of
the waves in the absence of vibrational forcing, Td , and the
Faraday period, TF , and is also inversely proportional to the
proximity to the Faraday threshold, specifically

Me = Td

TF(1 − γ /γF)
. (7)

We note that the divergence of the memory parameter as
γ → γF does not indicate the onset of singular behavior
but rather signals the limitations of linear wave models in
describing this high memory limit.

In Eq. (6), S is one of the two phase parameters:

S =
∫ TF

0 F(τ ) sin ωτ/2 dτ∫ TF
0 F(τ ) dτ

, C =
∫ TF

0 F(τ ) cos ωτ/2 dτ∫ TF
0 F(τ ) dτ

.

(8)

Here again, F(t) = mZ̈ + mg∗(t) is the normal force exerted
by the drop on the bath. S and C arise in the wave theory as the
first Fourier coefficients in a Fourier series expansion of F(t)
divided by the weight of the drop. To gain physical insight
into the origin of these parameters, notice that in the limit of
an instantaneous impact, S and C are proportional to the sine
and cosine of the impact phase relative to the bath acceler-
ation. In general, S determines the effectiveness of the drop
in generating waves, while C appears in the strobed trajectory
equation (4) when one performs the average F(t)∇h(xp, t) and
so determines the effectiveness of the waves in propelling the
droplet horizontally. We note that in the strobed trajectory
equation (4), the phase parameters appear only as a product,
sin � = 2SC. Moláček and Bush11 gave approximate bounds
for this product as 0.25 < sin � < 0.65, noting that sin � will
in general depend on the value of the memory and the fluid
parameters. In their study, they used sin � ≈ 0.5 as a fitting
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parameter chosen to best match the free walking speed for
silicon oil with kinematic viscosity νe = 20 cSt.

The discrete nature of the wavefield in Eq. (6) makes
study of the trajectory equation analytically intractable for
any situation more complex than the single droplet bouncing-
to-walking transition. To this end, the trajectory equation
developed by Moláček and Bush was transformed by Oza
et al.18 into an integro-differential form. Oza et al. demon-
strate that, provided the time scale of bouncing ∼TF is much
faster than the time scale of horizontal motion, the sum may
be replaced by an integral. The wave form may then be written
as an integral over a continuous history of past impacts:

h(x, t) = AS cos ωt
2

TF

∫ t

−∞
J0[kF |x − xp(s)|]e− (t−s)

TF Me ds. (9)

Note that the 1√
t−s

factor appearing in the discrete model (6)

is replaced in (9) by the constant T−1/2
F for the sake of ana-

lytic expedience, an approximation that was found to have a
negligible effect on the model predictions. By inserting the
wave form (9) into the trajectory equation (4), one obtains the
stroboscopic model, so called because the forces have all been
averaged over a period of the drop’s vertical motion and the
equations contain no notion of the bouncing time scale. In the
stroboscopic model, the phase parameters enter as a product
sin � = 2SC, which was taken by Oza et al.18 to be a constant
of approximately 0.3. The lower value used in this study may
be attributed to the replacement of the 1√

t−s
factor with a con-

stant, T−1/2
F . This approximation alters the amplitude of the

waves, thus leading to different inferred values of the phase
parameters, as is discussed in detail by Couchman et al.17

With the simplification of a constant sin �, the stroboscopic
model was able to accurately predict the bouncing to walk-
ing transition and the dependence of the free walking speed
on memory.18 It also provided theoretical rationale for the sta-
bility of circular orbits observed when the bath is subjected
to rotation26,31,35 or a simple harmonic potential.27,32,36–38

Finally, the stroboscopic model was adopted in the first the-
oretical study of the transitions to chaos in orbital pilot-wave
dynamics.39

The success of the stroboscopic model has been limited
in rationalizing the stability of configurations with multiple
droplets. Oza et al.13 have recently studied the interactions of
two identical droplets above the walking threshold γW , where
the droplets may settle into orbits with quantized radii, as
observed by Couder et al.10 and Protière et al.6,40,42 Two addi-
tional refinements to the stroboscopic model were required in
order to achieve a match between experimental results and
theoretical predictions.

The wavefield introduced by Moláček and Bush was
found to have insufficient spatial decay to account for the long
range interactions of the drops. Consequently, a more accurate
spatiotemporal damping was added to the wave kernel of Oza
et al.,18 leading to the following integral expression for the
waves:

h(x, t) = A

TF

∫ t

−∞
J0[kF |x − xp(s)|]e− α|x−xp(s)|2

t−s+TF e− (t−s)
MeTF ds.

(10)

The spatiotemporal damping term was alluded to, but not
fully developed, in Appendix A of Moláček and Bush11

[see Eq. (A47)]. We outline a derivation of its form here in
the Appendix. Damiano et al.16 found that when this addi-
tional spatial damping is included, the theoretically predicted
wave form provides an excellent description of that mea-
sured using the free-surface synthetic Schlieren technique of
Moisy et al.29 It should be noted that a wave form with a
similar spatiotemporal damping is derived by Tadrist et al.43

from a fluid mechanical model obtained using an alternative
approximation to the Navier-Stokes equations.

Although the assumption that sin � is constant has
proven to be sufficient for describing the motion of a single
drop, it has limitations when describing the interactions of
multiple drops, where modulations of the vertical dynamics
are known to arise. The effect of variations in vertical dynam-
ics was seen to be important in both orbiting pairs13 and the
promenading mode.14,33 Oza et al.13 proposed a linear depen-
dence of sin � on the effective forcing �eff = γ /γF − phc,
where p is a fitting parameter and hc is the local wave ampli-
tude produced by both drops. The inclusion of spatiotemporal
damping and phase modulations was essential in capturing the
stability of bound orbits of different radii. Arbelaiz et al.14

were also obliged to consider variations in sin �, deducing
a quadratic dependence on an alternative effective forcing
�eff = γ /γF − p̃h̃, where p̃ is another fitting parameter and
h̃ is the component of the wave beneath one drop due to the
wave produced by its partner. Consideration of both vertical
dynamics and spatial damping was required by Couchman
et al.15 in their study of the instabilities and oscillations of
bound droplet pairs, but here the dependence on the verti-
cal dynamics was treated systematically using the procedure
described by Couchman et al.17

A drawback of the stroboscopic model is that it has been
derived from purely a standing wave model. This assump-
tion was partially justified by Moláček and Bush11 who
showed that waves with wavenumber very close to the Fara-
day wavenumber kF have the smallest temporal decay factor
(Fig. 2). However, there are other subdominant wave modes
with different wave numbers, the inclusion of which allows
the full wave field to be a written as a sum of out-of-phase
standing waves. It is possible to include these additional
waves within the framework of the stroboscopic model, as
will be discussed in a future work. Since the radial motion
of the zeros of the wave field does not affect the dynam-
ics of single drops, a standing wave model was sufficient to
rationalize the bouncing to walking transition. However, the
radially propagating wave front generated by each impact has
been seen by Galeano-Rios et al.60 to play a critical role in
the reversal in the direction of ratcheting droplet pairs7 as
the memory is increased. We thus expect that replacing the
monochromatic Bessel function by a sum of Bessel functions
with different wave numbers may alter the stability of droplets
interacting through their common wave field.

Milewski et al.24 introduced a more complete Faraday
pilot-wave model by coupling the logarithmic spring model of
Moláček and Bush to a quasi-potential, weakly viscous wave
model. Describing the fluid velocity as a potential flow u =
∇φ and linearizing the incompressible Navier-Stokes with
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FIG. 2. When multiple droplets interact, they may lock into quantized bound
states such as (a) orbiting pairs,6,40 (b) promenading pairs,33 and (c) lattice
structures.41 In order to rationalize the dynamics of bound droplet pairs, it
has been necessary to consider spatiotemporal damping in the wave models
and modulations of the vertical bouncing dynamics.13–15

small viscosity, one arrives at the following quasi-potential,
weakly viscous system for the wave height h(x, t):

∇2φ = 0, z ≤ 0, (11)

φ → 0 as z → −∞, (12)

φt = −g(t)h + σ

ρ
∇2h + νe∇2φ − 1

ρ
PD, z = 0, (13)

ht = φz + νe∇2h, z = 0. (14)

The drop is coupled to the wave evolution via the pressure
term PD = PD(x − xp(t), t), which vanishes when the drop
is not in contact with the bath, and is otherwise given by a
ratio of the normal force exerted by the drop and the con-
tact area between the drop and the bath. This model is able
to capture many more subtle features of the walker system,
such as modulations in vertical dynamics and the traveling
wave fronts reported by Eddi et al.,19 but neglected in the ear-
lier standing wave models. Their model also does not require
the drop to be in a (2, 1) mode, thus providing a theoretical
framework for examining drops in more complex bouncing
modes. Furthermore, through its relatively complete treatment
of the wave field, this was the first theoretical model to cap-
ture the Doppler effect in the wave field reported by Eddi
et al.19 The wave forms of a bouncing droplet predicted by
this model and the stroboscopic model with spatiotemporal
damping were found to agree favorably, as demonstrated in
Fig. 9 of Milewski et al.24 Comparisons between the bouncer
wave profiles predicted by Milewski et al.,24 the stroboscopic
wave with and without spatial damping11,18 and experiments
are presented in Figs. 4–6 of Damiano et al.16

Simulations of the model of Milewski et al.24 are numer-
ically expensive. However, Durey and Milewski38 derived a
reduced model based on Eqs. (11)–(14), by assuming that the
drop is in a resonant (2, 1) bouncing mode, that the impact is
instantaneous, and that the drop contacts the bath at a single
point. It is then possible to derive a discrete-time system for
the drop’s horizontal position. This numerical model is highly
efficient and allowed Durey and Milewski to explore the long-
time statistics of a drop moving chaotically in a harmonic
potential. Furthermore, it allows for a full stability analysis
of different bound states, including promenading and orbiting
droplet pairs, and droplet trains.

In the limit of weak acceleration, Bush et al.44 showed
that it is possible to re-express the wave force in terms of a
wave-induced added mass and a nonlinear drag. Specifically,
taking the weak acceleration limit of the stroboscopic model
without spatiotemporal damping or phase variations, the tra-
jectory equation (4) may be reduced to a nonlinear ordinary
differential equation, known as the boost model

d

dt
(γBẋ) + Dw(|ẋ|)ẋ = F, (15)

where the form of the hydrodynamic boost factor γB and
restoring force Dw(|ẋ|)ẋ were derived explicitly and F is an
externally-imposed, classical force. This equation describes
the dynamics of a particle with speed-dependent mass subject
to a nonlinear drag force, which acts to drive the parti-
cle motion toward its free walking speed. The nonlinear,
speed-dependent drag force was first derived by Labousse
and Perrard,45 who showed that the evolution of walkers in
a harmonic potential at low memory can be well described
by a two-dimensional Rayleigh oscillator. The boost for-
mulation of the walker dynamics provided insight into the
orbital motion of walkers in both a rotating frame and in
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the presence of a confining spring force:26,31,35 the wave-
induced added mass accounts for the anomalously large
orbital radii observed.44 Moreover, when the walker moves
at its free walking speed, the nonlinear drag vanishes. The
driving of the bath then precisely balances the viscous dis-
sipation, and the boost equation (15) describes the invis-
cid dynamics of a particle whose mass depends on its
speed.

IV. INTERACTIONS WITH BOUNDARIES

The wave models presented in Sec. III are strictly
valid only for drops moving in free space. However,
many interesting phenomena arise when walkers inter-
act with abrupt changes in bottom topography. Examples
include walker interactions with submerged pillars (see Har-
ris et al.,61), walker interactions with a single and double
slits,30,46,47 unpredictable tunneling of walkers across shallow
regions,48,49 and the wavelike statistics of walkers in circular
corrals.50,51

Couder and Fort30 were the first to numerically investi-
gate the effect of submerged boundaries on the trajectory of a
walking droplet in the context of single and double slits. They
extended the trajectory equation of Protière et al.6 to include
boundary effects, by modeling the walls as secondary wave
sources. The phase of the secondary wave is selected so that
the total wave amplitude vanishes on the boundaries, effec-
tively imposing a Dirichlet boundary condition. In the context
of walker motion in corrals, Gilet52,53 and Blanchette54 also
treated abrupt variations in depth as effective boundaries.
In both studies, the waves are decomposed into a sum of
eigenfunctions of the Laplacian on the finite domain of inter-
est. Gilet52,53 imposed Neumann boundary conditions, while
Blanchette54 imposed a Dirichlet condition.

Dubertrand et al.55 considered the behavior of a walker
passing through a slit with a theoretical model simi-
lar to Gilet,52,53 using Neumann boundary conditions to
model effective boundaries, but constructed the wave out
of the Green’s function for the Helmholtz equation obey-
ing a far field radiation condition. The models of Gilet,52,53

Blanchette54, and Dubertrand et al.55 were each able to cap-
ture certain behaviors of walking droplets interacting with
submerged boundaries. However, the use of a Dirichlet or
Neumann boundary condition to model the effect of the abrupt
change in bottom topography is an assumption that cannot
be derived from the fluid mechanical boundary conditions.
It is thus not entirely surprising that these models could
not capture the full range of behaviors observed in closed
geometries.

Nachbin et al.49 studied tunneling of walkers across sub-
merged boundaries. By restricting their attention to motion in
a one-dimensional channel, the authors could use conformal
mapping techniques to transform the variable topography onto
a flat bottom. Doing so allowed them to reproduce the experi-
mentally observed decay of tunneling probability with barrier
width.48 Their method is highly appealing for 1D geome-
tries, but its extension to two-dimensional geometries is not
straightforward.

Faria56 has adapted the quasi-potential model of
Milewski et al.24 to study interactions with submerged barri-
ers. Rather than treating changes in topography as boundaries,
he treats them as regions where the local wave speed changes.
He thus approximates the vertical derivative of the velocity
potential at the surface, φs(x, 0, t), in Eq. (14) as

φz(x, 0, t) = −∇ · [b(x)∇φ(x, 0, t)], (16)

where b(x) is chosen so as to match the local, depth-dependent
dispersion relation in all regions of the bath. The model of
Milewski et al. then reduces to a system of two partial dif-
ferential equations for the wave form h(x, t) and the velocity
potential φ(x, 0, t) evaluated at the bath surface:

φt = −g(t)h + σ

ρ
∇2h + νe∇2φ − 1

ρ
PD, (17)

ht = −∇ · [b(x)∇φ] + νe∇2h. (18)

The vertical dynamics are approximated by instantaneous,
point impacts. This reduced model was able to capture the
non-specular reflection and refraction of walkers approach-
ing discrete steps56,57 and circular pillars (Harris et al.,61), in
addition to the interaction of walkers with slits.46,56

V. GENERALIZED PILOT-WAVE FRAMEWORK

We proceed by discussing a generalized pilot-wave
framework that may be adapted in exploring pilot-wave
dynamics in parameter regimes not necessarily accessible
with the walker system. Two critical features of the walker
system responsible for the quantum-like behavior of the
walker system are a monochromatic wavefield and resonance
between the drop and the bath. We thus retain these key
features while discarding others.

Non-dimensionalizing lengths by kF , and time by TFMe,
the stroboscopic trajectory equation of Oza et al.18 includ-
ing spatiotemporal damping and phase variations may be
written as

κ ẍp + ẋp = −βC(t)∇h[xp(t), t], (19)

h(x, t) =
∫ t

−∞
S(s)J0(|x − xp(s)|)e

− α̂|x−xp(s)|2
t−s+M−1

e e−(t−s) ds, (20)

with

S = Sh(xp(t), t), �, (21)

C = Ch(xp(t), t), �. (22)

When the trajectory equation is written in the form of
(19)–(22), we can interpret κ as an effective mass of the parti-
cle prescribing its inertial response to the wave forcing, whose
strength is prescribed by β. The central feature of the wave
form in (20) is a radially symmetric, monochromatic wave
kernel, generated at each point along the walker’s trajectory
and decaying in time over a time scale TFMe. Since the waves
in the walker system are in two dimensions, the basic spa-
tial dependence is a monochromatic Bessel function, J0(r).
Of course, the trajectory equation (19) may be augmented
to include additional classical forces such as the Coriolis
force,26,39,58 Coulomb force,39 or linear spring force.32,37,38
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Bush12 discussed a relatively simple generalized pilot-
wave framework that follows from (19) and (20) if one sets
the phase parameters to be constant and the damping kernel to
unity. In this limit, for the walker system, Oza et al.18 showed
that κ and β depend explicitly on the forcing acceleration of
the bath � and hence also the memory Me:

κ = m

D̄TFMe
, β = mgAk2

FTFM 2
e

D̄
. (23)

In this limit, there is a two-dimensional parameter space
(β, κ), exploration of which has already yielded some new
phenomenology (see Valani et al.,62). The droplet system is
constrained to a relatively small regime, where κ and β are
O(1), but numerical investigation of the trajectory equation
across a larger parameter regime may yield other behavior
that is not accessible in the walker system. In particular, Oza
et al.63 consider hydrodynamic spin states, which consist of
a droplet trapped in a circular orbit by its own wave field.
While such states may appear as transients in the walking drop
system,27 Oza et al.63 have shown that in the small κ limit of
this generalized pilot-wave framework, they are stable.

Spatio-temporal damping in the context of the walker
system refers to the addition of a Gaussian profile of time
dependent width to the wave kernel:

e
− α̂r2

t+M−1
e with α̂ = α

k2
FTFMe

. (24)

This specific form of spatiotemporal damping is special to the
walker system, since it is derived through an approximation
of the effect of viscous damping on the far field of the wave,
with the damping factor α given in terms of fluid parameters
in Table I. It is an inessential feature of the pilot-wave frame-
work when considering the behavior of isolated walkers, since
its inclusion does not substantially alter the local wavefield.
However, it has proved essential for rationalizing the interac-
tions of bound droplet pairs.13–15 While still an approximation
to the true wavefield, the wave form with spatiotemporal
damping included matches well with experimental data,16

suggesting that it is sufficient for most walker systems.
The phase parameters are more subtle but provide a

means to couple the oscillations of a particle to those of its
spatially extended wavefield. S describes how effective the
particle oscillations are in generating waves at each impact,
while C describes how effectively the waves impart horizontal
momentum to the particle. For the droplet system, Couch-
man et al.17 find that, in the single droplet walking regime,
S is approximately constant, while C may be approximated
as a linear function of � and the local wave amplitude h̃ =
h(xp(t), t). For an isolated walker, the product 1/2 sin � = SC
is bounded between 0.1 and 0.4, which accounts for the
successes of the stroboscopic model when sin � ≈ 0.5 was
adopted.11 One thus expects that including phase modulations
will have a negligible effect on single droplet dynamics. How-
ever, both parameters S and C may become time-dependent
when multiple walkers interact. Including the effect of phase
modulations has been essential in several recent studies of
droplet pair interactions.13–15

The progressive theoretical modeling of this subtle
hydrodynamic system suggests a number of new directions

TABLE I. Dimensional and dimensionless variables arising in the walker
system.

Variable Description

R, m Droplet radius, mass

ρ, σ , νe Fluid density, surface tension, effective kine-
matic viscosity

g Gravitational acceleration

f , ω = 2π f Frequency and angular frequency of bath
oscillations

μa Dynamic viscosity of air

γ , � = γ /g Amplitude of bath acceleration, dimension-
less amplitude

kF , TF = 4π/ω Faraday wavenumber, Faraday period

D̄ = Cmg
√

ρR/σ + 6πRμa Drag coefficient

S,C, sin � = 2SC Phase parameters (see Sec. III)

ωD =
√

σ

ρR3 Droplet’s natural oscillation frequency

Td = νek2
F Decay time

Bo = ρgR2/σ Bond number

Ohe = νeρ(σρR)−1/2 Ohensorge number

� = 2π f
√

ρR3/σ Vibration number

Me = Td
TF (1−γ/γF )

Memory parameter

A =
√

2πνeTF
π

mgk3
F R2

σ(3k2
F R2+Bo)

Wave amplitude in stroboscopic model18

κ = m
D̄TF Me

Non-dimensional mass

β = mgAk2
F TF M 2

e
D̄

Non-dimensional memory force coefficient

α = ε2

2νe(1+2ε2)
, Spatial damping factor

ε = Ohe�RkF
3k2

F R2+Bo
Viscosity induced wave-number
correction13

to explore with a generalized pilot-wave framework. For a
droplet bouncing on a fluid bath, the wave-field can only
depend on two spatial dimensions, giving rise to a wave force
in the direction of its gradient. One could then first extend
the trajectory equation to three dimensions by replacing the
Bessel function with the spherically symmetric eigenfunctions
of the Laplacian in higher dimensions. The form of spatiotem-
poral damping in the wave kernel of Eq. (20) arises due to the
action of viscous dissipation on the waves. Within the context
of a generalized pilot-wave framework, the form of the spa-
tial damping kernel may be prescribed by different physical
effects and thus take on different functional forms, a direction
which has yet to be fully explored.

Another direction in which the generalized pilot-wave
framework (19)–(22) could be extended would be the consid-
eration of more complex couplings between the particle and
the wave. Fort and Couder59 considered a deviation from the
hydrodynamic walker system, by considering inertial walk-
ers, wherein the particle generates a wave at each impact
that continues to translate with the velocity of the particle
at the time of its generation. These inertial walkers were
found to admit circular orbital trajectories, whose radii satisfy
the Bohr-Sommerfeld quantization condition. One expects
that explorations of a generalized pilot-wave framework may
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TABLE II. Summary of theoretical models of walker dynamics in the absence of boundaries. Computational times are given as orders of magnitude of time
taken to simulate the motion of a single (2, 1) droplet on a desktop computer (with a 2.7 GHz Intel Core i5 processor), relative to real time in the experiments.

Model and authors Vertical dynamics Wave model Simulation time/real time

Path-memory model (Fort et al.31) Uncoupled from horizontal dynamics Bessel functions generated by point
impacts

O(1)

Pilot-wave hydrodynamic model
(Moláček and Bush11)

Logarithmic spring

Stroboscopic integral model (Oza
et al.18)

Constant bouncing phase Bessel functions generated continu-
ously along trajectory

Variable bouncing phase (Couchman
et al.17)

Bessel functions with spatial
damping13,15

Rayleigh oscillator model (Labousse
and Perrard45)

No vertical dynamics Wave effects enter through nonlinear
drag

O(10−3)

Boost model (Bush et al.44) Wave effects enter through nonlinear
drag, added mass

Faraday pilot-wave model (Milewski
et al.24)

Logarithmic spring Quasi-potential, weakly viscous O(102)

Discrete Faraday pilot-wave model
(Durey and Milewski38)

Discrete, instantaneous impacts O(10−1)

Kinematic match pilot-wave model
(Galeano-Rios et al.25)

Kinematic match of drop and bath
surface

O(104)

yield a new array of dynamical phenomena not necessarily
achievable with the walker system.

VI. DISCUSSION AND CONCLUSIONS

We have reviewed the various models for the vertical and
horizontal dynamics of a droplet bouncing on the surface of a
vertically vibrated bath. In particular, we have considered the
hierarchy of wave models that have been developed to capture
the range of complex dynamical phenomena observed in the
walker system. For describing the dynamics of single droplets
in the resonant (2,1) bouncing mode in unbounded domains,
the relatively simple stroboscopic models derived by Fort33,34

and Oza et al.18 suffice. Specifically, they have provided an
adequate description of the bouncing to walking transition
and the dynamics of circular orbits in the presence of an
externally imposed classical potential. The wave model of
Milewski et al.24 provides a more comprehensive framework
in which to study drops in other bouncing modes or drop-
drop interactions. The extension of this model to a discrete
form by Durey and Milewski38 provides an efficient method
for performing stability analysis of more complex orbits and
interacting droplet pairs. In order to describe walkers inter-
acting with submerged boundaries, simple analytic models
for the wave field have been found lacking, but numerical
methods49,56 have proven to be successful.

To accurately model interactions between walkers using
analytic wave models, it is essential to consider both the
effects of phase modulations and the spatiotemporal wave
damping.13–15 The spatial damping in the walker system arises
from the specific nature of the viscous damping. Phase mod-
ulations, however, arise due to a nonlinear coupling between
dynamics on the scale of the particle and the wavefield. While
this coupling may be explicitly understood for the walker
system,17 exploring generalized dependencies of the phase
parameters on the local wave field and other system param-
eters may allow us to rationalize other exotic pilot-wave
systems where the physics at the lengthscale of the particle

and over the time scale of its vibration has yet to be fully
resolved.
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APPENDIX: STROBOSCOPIC MODEL WITH
SPATIOTEMPORAL DAMPING

We proceed by outlining a derivation of the stroboscopic
model with spatial damping from the quasi-potential weakly
viscous wave model (Eqs. (11)–(14)) presented by Milewski
et al.24 Since we are interested in solving the problem in
free space, we may introduce a Fourier transform so that the
velocity potential φ and wave height h are written as

φ(x, z, t) =
∫∫ ∞

−∞
�(k, t)ekzeik·xd2k, (A1)

h(x, t) =
∫∫ ∞

−∞
a(k, t)eik·xd2k, (A2)

where k = |k|. This form ensures that φ satisfies the Laplace
equation and decays as z → −∞. We can then write the
system (11)–(14) as two equations in spectral space for �

and a:

∂�

∂t
= −g(t)a − σ

ρ
k2a − νek2�

− 1

4π2ρ

∫∫ ∞

−∞
PD(|x − xp(t)|)e−ik·x d2x, (A3)
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∂a

∂t
= k� − νek2a. (A4)

To evaluate the pressure term, we note that the pressure
exerted by the drop on the bath is zero outside of the con-
tact area. We can further simplify the calculation by supposing
that the pressure distribution inside the contact area does not
depend on position so that

PD =
⎧⎨
⎩

F(t)

πw2
for |x − xp(t)| < w

0 for |x − xp(t)| > w.
(A5)

We can then evaluate the integral in Eq. (A3) exactly to yield

1

4π2

∫∫
PD[|x − xp(t)|]e−ik·x d2x = F(t)

kπw
e−ik·xp(t)J1(kw).

(A6)

By non-dimensionalizing lengths by the droplet radius
x′ = x/R and time by the droplet’s natural oscillation fre-
quency t′ = ωDt, it is then possible to rewrite the system
(11)–(14) as a single forced, damped Mathieu equation for the
non-dimensional a(k, t). The non-dimensional equation con-
tains four parameters: an effective Ohnesorge number, Ohe,
determining the viscous damping of the waves; the Bond num-
ber, Bo, determining the relative importance of gravity to
surface tension; the dimensionless bath acceleration, �; and
the vibration number, �, determining the ratio of the bath
oscillation frequency to the natural oscillation frequency of
the drop (see Table I). Dropping the primes and taking the
limit w → 0, we can write this equation as

∂2a

∂t2
+ 2Ohek2 ∂a

∂t
+ [k3 + Oh2

ek4 + kBo(1 + � sin �t)]a

= −2

3
kF(t)e−ik·xp(t). (A7)

The left-hand side is the same as Eq. (2.33) of Milewski
et al.24

A solution for this equation can formally be written in
terms of the Green’s function:

a(t) = −2

3
k
∫ t

−∞
G(t, τ)e−ik·kp(τ )F(τ ) dτ . (A8)

We will now restrict attention to (2, 1) bouncers so that F(τ )

is 4π/� periodic. Moláček and Bush11 showed that in the
limit of small Oh and Bo and for k ≈ kF , G(t, τ) may be
approximated by

G(t, τ) ≈ − 2

�
sin

�τ

2
cos

�t

2
e−β(k)(t−τ), (A9)

where β(k) = 1
Me

+ β1(k − kF)2. Under these assumptions,
we may then approximate each wavemode in the neighbor-
hood of k = kF by the following integral:

a(t) ≈ 4k

3�
cos

�t

2

∫ t

−∞
e−β(k)(t−τ)e−ik·xp(τ ) sin

�(τ)

2
F(τ ) dτ .

(A10)

In the limit of � → �F , we note that the integrand of (A10)
depends on two separate time scales. There is a fast time scale
associated with the bath oscillations and the forcing due to the
droplet, which scales with the Faraday period TF , and a slow

time scale associated with the viscous decay of the waves and
the horizontal trajectory of the droplet, which both vary over
the memory time, Me. Assuming the vertical dynamics remain
constant, we may approximate (A10) for large memory by
averaging over the fast time scale so that

a(t) ≈ 4BoSk

3�
cos

�t

2

∫ ∞

0
e−β(k)se−ik·xp(t−s) ds. (A11)

By taking the inverse Fourier transform of (A11) and switch-
ing orders of integration, we formally recover an analytic
approximation to the wavefield generated by a walking drop:

h(x, t) = 4BoS
3�

cos
�t

2

∫ ∞

0
e−s/MeI[s, x − xp(t − s)] ds,

(A12)
where

I(s, x) =
∫∫ ∞

−∞
k2eik·x−β1s(k−kF )2

d2k. (A13)

In the limit of β1s → ∞, the asymptotic approximation

I(s, x) ∼
√

π

β1s
k2

Fe
− |x|2

4β1s J0(kF |x|), (A14)

was alluded to by Moláček and Bush11 and leads to the wave
form included in the stroboscopic model with spatiotemporal
damping, as presented in Eq. (10). A derivation of a similar
result has been presented in Appendix C of Tadrist et al.43

Using the approximation for I(s, x) in Eq. (A14) leads
to waves whose derivatives are singular at the origin. The
bouncer wave field obtained from (A14) was found to give
good comparisons with experimental observations as reported
by Damiano et al.,16 provided the 1√

s
factor was neglected in

the same manner as presented by Oza et al.18 Spatio-temporal
damping of this form was used explicitly by Oza et al.13 to
study orbiting pairs of droplets, but in addition to neglect-
ing the 1√

s
factor, it was also necessary to adjust the Gaussian

factor to e
− |x|2

4β1(t+TF ) to remove singularities from the gradient
of the wavefield underneath the drop. Addressing these sin-
gularities in a rigorous manner will be the subject of future
work.
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