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We present the results of an experimental investigation of the dynamics of droplets bouncing on a
vibrating fluid bath for forcing accelerations above the Faraday threshold. Two distinct fluid vis-
cosity and vibrational frequency combinations (20 cS–80 Hz and 50 cS–50 Hz) are considered, and
the dependence of the system behavior on drop size and vibrational acceleration is characterized. A
number of new dynamical regimes are reported, including meandering, zig-zagging, erratic bouncing,
coalescing, and trapped regimes. Particular attention is given to the regime in which droplets change
direction erratically and exhibit a dynamics akin to Brownian motion. We demonstrate that the effec-
tive diffusivity increases with vibrational acceleration and decreases with drop size, as suggested by
simple scaling arguments. Published by AIP Publishing. https://doi.org/10.1063/1.5031426

A droplet may walk on the surface of a vertically vibrated
fluid bath, propelled by the waves generated by its pre-
vious impacts. The resulting hydrodynamic pilot-wave
system exhibits several features that were once thought to
be peculiar to quantum systems. To date, attention has pri-
marily been restricted to the dynamics of droplets below
the Faraday threshold, the critical vibrational accelera-
tion above which the interface becomes unstable in the
absence of drops. We here examine the droplet dynamics
arising above the threshold. Specifically, we character-
ize the dependence of the droplet behavior on the drop
size and vibrational acceleration and so develop a pair of
regime diagrams for two different combinations of fluid
viscosity and vibrational frequency. We give particular
focus to the erratic bouncing regime, where the drop exe-
cutes Brownian motion. In this regime, we characterize the
dependence of the effective diffusivity on droplet radius
and vibrational acceleration.

I. INTRODUCTION

Droplets walking on a vibrating fluid bath have been
shown to exhibit several features of quantum mechanical
systems,1 including quantized orbits,2–5 tunneling,6,7 and the
emergence of multimodal statistics in confined geometries.8,9

Walking droplets are an example of a pilot-wave system: the
droplet generates a wave at every impact with the bath and
is, in turn, guided by the local slope of the bath surface,
whose form is prescribed by the superposition of waves gen-
erated from previous bounces. The longevity of the waves
is controlled by the vibrational acceleration of the bath, γ .
If γ < γF , where γF is the Faraday threshold, the surface
would remain unperturbed in the absence of the drop.10 As
γ approaches γF from below, linear waves generated by
the drop persist for the memory time TM = Td/(1 − γ /γF),
where Td ∼ λ2

F/ν is the temporal decay time of the waves in
the absence of forcing.11 Nonlinear wave effects are expected
to be important near the Faraday threshold. For γ > γF , the

a)bush@math.mit.edu

entire surface becomes unstable to the Faraday instability so
that waves appear throughout the bath. In previous experimen-
tal investigations of this hydrodynamic pilot-wave system,
care was taken to ensure that γ remained below γF , thus
avoiding the appearance of a background Faraday wavefield
and ensuring that the drop was guided solely by its pilot-
wave field. For γ < γF , the walking drops execute rectilinear
motion provided they are sufficiently far from boundaries.12,13

Stochastic electrodynamics is a sub-branch of quantum
field theory, according to which microscopic quantum parti-
cles interact with a background field, specifically zero-point
electromagnetic vacuum fluctuations.16 Notably, the inferred
energy spectrum of this zero-point field E(ω) = �ω/2 allows
for the introduction of Planck’s constant, �, into a classi-
cal theory.14 The zero-point field has been sought as the
basis for an electromagnetic pilot-wave theory in quantum
mechanics,15,16 in which case it would play the role of the
vibrating bath in the hydrodynamic pilot-wave system in ener-
gizing the system.1 Stochastic dynamics,17,18 de Broglie’s
pilot-wave theory,19 and Bohmian mechanics20 have all like-
wise sought to rationalize quantum mechanics in terms of
interactions between microscopic particles and a stochastic
background field. With a view to introducing an irregular
forcing into this hydrodynamic pilot-wave system and so
exploring a regime that might potentially yield new hydrody-
namic quantum analogs, we were thus compelled to examine
the dynamics of bouncing droplets interacting with a back-
ground field consisting of the Faraday wavefield arising for
γ > γF . Our study thus represents a variant of the bounc-
ing ball dynamics that has been explored extensively in the
dynamical systems community.21,22

In the hydrodynamic pilot-wave system, the waves serve
to propel the bouncing drops by imparting an impulse
during impact. If the vertical dynamics of the droplet
are aperiodic, that is, the phase of impact relative to
the Faraday wave changes with every bounce, then the
resulting lateral impulses will be irregular. These impulses
are thus expected to serve as a source of stochastic-
ity in hydrodynamic pilot-wave systems and so may give
rise to new dynamical states. For example, Oza et al.23
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theoretically demonstrated that self-orbiting states exist but
are unstable for accessible fluid parameters below the Faraday
threshold. The role of noise in the stability of hydrodynamic
spin states has also been examined.24 The question naturally
arises as to whether these spin states might exist above the
Faraday threshold, where the confining wave force required
for stable spin states might be amplified.

Prior studies examined droplets bouncing above the Fara-
day threshold in two specific cases. First, Sampara and Gilet
explored the dynamics of bouncing droplets on a bath forced
by two frequencies.25 Second, Sungar et al.26 introduced an
array of pillars to the bath and observed that, for γ /γF � 1.02,
the form of the Faraday waves in the vicinity of the pillars
is analogous to that arising in the optical Talbot effect.27 The
resulting Faraday-Talbot wave pattern was capable of trapping
both walking and bouncing droplets in its troughs, a hydrody-
namic analog of particle trapping with the Talbot effect.28,29

We here characterize the dynamics of droplets above the Fara-
day threshold in the absence of pillars, forced with a single
frequency, and identify the regimes where droplets become
trapped by the underlying Faraday wavefield.

The bouncing and walking behavior of drops on a
bath vibrating below the Faraday threshold have been thor-
oughly characterized experimentally,11,30,31 and consider-
able effort has been devoted to rationalizing this behavior
theoretically.5,12,32–34 We here extend the regime diagrams of
Wind-Willassen et al.12 for silicone oil droplets of kinematic
viscosity 20 and 50 cSt at driving frequencies of 80 and 50 Hz,
respectively. In Sec. II, we describe our experimental appara-
tus and methods. In Sec. III, we enumerate the dynamic states
arising above the Faraday threshold. In Sec. IV, we examine
the dynamics of drops bouncing erratically above the Fara-
day threshold, demonstrating that they exhibit behavior akin
to a two-dimensional random walk. We then characterize the
dependence of the effective drop diffusivity on droplet size
and forcing acceleration, and rationalize this dependence via
simple scaling arguments.

II. EXPERIMENTS

We explore the bouncing and walking dynamics above
the Faraday threshold in a circular bath filled to a depth
of h = 6 mm with silicone oil of viscosity ν = 20 or 50 cS.
A schematic of the experimental arrangement is presented
in Fig. 1. The bath is vibrated vertically with amplitude
A, frequency f , and acceleration �(t) = γ cos(2π ft), where
γ = A(2π f )2. Two vibrational frequencies are considered,
f = 50 Hz for the 50 cS oil and f = 80 Hz for the 20 cS oil, the
combinations considered below threshold in prior work.12,30,32

When the vibrational acceleration is sufficiently large,
γ > γF , the surface of the bath becomes unstable to subhar-
monic Faraday waves that oscillate with frequency f /2 and
wavelength λF = 2π/kF . The observed wave-number kF is
well described by the standard water-wave dispersion relation

ω2
F(k) =

(
gk + σ

ρ
k3

)
tanh(kh), (1)

where ωF = ω/2 = π f is the subharmonic angular frequency,
g the gravitational acceleration, σ the surface tension, and

FIG. 1. Experimental arrangement.35 The fluid bath is shaken using an elec-
tromagnetic shaker coupled with an air bearing that constrains the vibrations
to be vertical. A CCD camera placed above the bath captures the horizon-
tal dynamics, and a high-speed Phantom camera allows for resolution of the
vertical dynamics.

ρ the fluid density. For the depth considered, h = 6 mm, a
vibrational frequency f = 80 Hz corresponds to a Faraday
wavelength λF = 4.75 mm, and 50 Hz to λF = 6.98 mm.

While the wavelength is prescribed by Eq. (1), the wave
pattern realized depends on both container shape and vibra-
tional acceleration. For our circular bath, the most unstable
mode at the onset of the Faraday instability, γ � γF , is a
boundary-dominated circularly-symmetric wave, with crests
arranged in concentric rings separated by λF [Fig. 2(a)]. As
the forcing acceleration γ is increased beyond approximately
1.015γF , the circularly symmetric wavefield is replaced
by a checkerboard pattern with characteristic spacing λF

[Fig. 2(b)]. In this regime, the boundary geometry has effec-
tively no influence on the background field of Faraday waves.
Successive instabilities arising as γ increases progressively
beyond γF have been characterized by Douady.36 At the high-
est forcing acceleration considered in our study, γ /γF = 1.2,
the background wavefield consisted of a standing checker-
board pattern.

When the vibrational acceleration is sufficiently large,
the interface breaks [Fig. 2(c)]. The critical acceleration for
surface rupture in a vertically vibrating bath has been deter-
mined empirically and theoretically.37,38 For low viscosity
fluids, the interface breaks when the upward inertial force
due to the vibrational acceleration γ ∼ 4g exceeds the sta-
bilizing force associated with surface tension: mγ > 2πλFσ ,
where m ∼ ρλ3

F is the accelerated fluid mass. Using the dis-
persion relation for deep-water capillary waves for λF yields
the critical acceleration γR for interfacial rupture,

γR = C

(
σ

ρ

)1/3

ω4/3, (2)

where C is an O(1) constant that depends on the fluid-
frequency combination. For 20 cS silicone oil vibrated at
80 Hz, γR/γF ≈ 4.02, while for 50 cS oil vibrated at 50 Hz,
γR/γF ≈ 2.15. When γR is exceeded, the system is char-
acterized by continuous droplet creation and annihilation,
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FIG. 2. (a) Circularly-symmetric Faraday pattern arising at
the onset of the Faraday instability, γ /γF ≈ 1.01. (b) Checker-
board Faraday pattern emerging at γ /γF = 1.05. (c) Faraday
wave rupture generates drops when the vibrational acceler-
ation is sufficiently high, γ > γR (= 4.02γF for 20 cS oil
vibrated at 80 Hz).

specifically, coalescence with the bath. As γR was not acces-
sible with our experimental apparatus, we simply state it as a
bound above which one may no longer consider the motion of
single drops.

In order to characterize the droplet dynamics above the
Faraday threshold, we use a piezo-electric droplet generator39

to repeatably create drops of uniform radii R in the range
0.2 mm < R < 0.5 mm (with ±0.5% variability). We gener-
ate a single drop, place it at the center of the domain, and then
affix a circular acrylic lid on top of the bath to eliminate the
influence of air currents. We gradually increase the forcing
acceleration beyond the Faraday threshold, γ > γF . A CCD
camera placed above the bath captures the horizontal motion
of the drop. A light-emitting diode (LED) lamp and diffuser
illuminate the setup from the side while a high-speed Phantom
camera placed beside the bath captures the vertical dynamics,
also allowing for accurate measurement of the drop radius.

We sweep through the forcing accelerations above the
Faraday threshold, γ /γF > 1, at increments 
γ/γF = 0.001
for drops with radii in the range 0.1 mm < R < 0.5 mm, cor-
responding to non-dimensional vibration numbers
� ≡ ω/

√
σ/(ρR3) in the range [0.1, 1.2]. For each value of

the forcing acceleration, we record the trajectory of the drop
for one minute, or until it reaches the edge of the circular bath.
We use the recordings to characterize the dynamics, as will be
summarized in Sec. III.

We characterize droplet trajectories in terms of a persis-
tence length Lp,40 defined as

〈cos θ〉 = e−s/Lp , (3)

where θ is the angle between the tangent velocity vectors at
an initial point and at another point an arclength s further
along the trajectory. 〈·〉 indicates the average value over all
initial points along a single trajectory. Similar measures of
coherence have been used by Gilet41 in his study of chaotic
walker motion in corrals below the Faraday threshold. The
relative magnitudes of Lp, the characteristic length over which
the drop changes direction, and the Faraday wavelength λF

provides a quantitative means of classifying the coherence
of the trajectories through the non-dimensional persistence
length  = Lp/λF . We note that the persistence length typi-
cally varies between individual trajectories, but its character-
istic value is nevertheless valuable in classifying the system
behavior into different regimes.

III. RESULTS

We summarize the observed droplet dynamics above
the Faraday threshold for 20 cS silicone oil driven at 80 Hz
in the regime diagram shown in Fig. 3(a). For all driving
accelerations above γF , the smallest drops (R < 0.2 mm, cor-
responding to � < 0.31) tend to bounce irregularly, moving
erratically in the horizontal until eventually coalescing. We
note that similar behavior also arises for these drops below
the Faraday threshold.32

Slightly larger drops (0.2 mm < R < 0.4 mm or 0.31 <

� < 0.86) walk along straight paths below γF . For γ > γF ,
they follow meandering trajectories, such as that shown in
Fig. 4(a), characterized by a relatively large non-dimensional
persistence length, 1 <  < 2. In this regime, the amplitude
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FIG. 3. Regime diagrams indicating the behavior of drops levitated on a vibrating bath for γ /γF > 1. We delineate the parameter regimes as a function of the
dimensionless forcing acceleration γ /γF and vibration number � = ω/

√
σ/(ρR3). (a) 20 cS silicone oil driven at 80 Hz and (b) 50 cS silicone oil driven at

50 Hz. The meandering regime is indicated in red, zig-zagging in pink, erratic bouncing in blue, trapping in green, and coalescing in striped black/blue regions.
Yellow indicates the regime of spontaneous drop creation from breaking Faraday waves, as arises when the forcing acceleration exceeds the threshold for
interface rupture (γ > γR). Note the difference in horizontal scales between panels (a) and (b).
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FIG. 4. Dynamic states observed for γ > γF . (a) Meander-
ing trajectory, characterized by a persistence length greater
than the Faraday wavelength,  = Lp/λF > 1. For this par-
ticular trajectory,  = 1.15. (b) A zig-zagging trajectory is
characterized by small amplitude lateral oscillations, with
wavelength on the order of λF , along a mean rectilin-
ear trajectory. The drop navigates the crests and troughs
of the underlying checkerboard Faraday wave pattern. (c)
Erratic walking, characterized by a dimensionless persis-
tence length  < 1. For this particular trajectory,  = 0.24.
(d) Side view of a droplet trapped above the Faraday thresh-
old in a (4,1) bouncing mode. The drop bounces in place on
the trough of the underlying subharmonic wave once every
4 driving periods (with period 2TF ).

of the Faraday wavefield is small relative to the drop’s pilot-
wave, so only weakly alters the walker’s direction. We note
also that small loops of radius λF/2 were often apparent
in meandering trajectories [Fig. 4(c)], indicating a tendency
toward hydrodynamic spin states.23,24 However, the underly-
ing wavefield is still insufficient to stabilize these spin states:
in the parameter regime considered, the loops were always
transient, never stable.

As the forcing acceleration is further increased (γ /γF ∼
1.015), meandering gives way to relatively regular zig-
zagging trajectories, as shown in Fig. 4(b), a transition that
coincides with the emergence of a checkerboard Faraday
pattern on the fluid surface [Fig. 2(b)]. In zig-zagging trajecto-
ries, the drop slightly deviates from a straight-line path, with
oscillations perpendicular to its direction of mean motion.
The oscillations occur with a characteristic wavelength on
the order of λF , indicating that the drop is navigating the
background checkerboard field of Faraday waves.

For 1.015 � γ /γF � 1.04, the amplitude of the under-
lying Faraday wave becomes comparable to or larger than
that of the pilot-wave generated by the drop, and the droplet
motion becomes highly irregular [see Fig. 4(c)]. Due to the
loss of resonance in the vertical dynamics, each impact arises
at a different phase, so the drop impacts a different waveform
at every bounce. Since the drop’s horizontal motion is driven
by the gradient of the underlying wave, it changes direction
in response to these varying impulses on the time scale of
its characteristic bouncing period TF . The frequent change
of direction translates to a dimensionless persistence length
less than 1, typically in the range 0.1 <  < 0.5, allowing
for differentiation from the meandering trajectories arising at
lower γ /γF .

For γ /γF � 1.04, the checkerboard pattern is able to trap
droplets of a certain size, causing them to bounce in place
indefinitely in the absence of external perturbations. A trapped
droplet is shown in Fig. 4(d); the droplet bounces periodically
in a (4,1) bouncing mode, once every 4 driving periods.42 We
note also that the trapping is relatively robust; perturbations
to trapped states cause the drop to move erratically for a few
seconds of transient motion before being trapped in another
trough. In this regime, the disturbance generated by the drop
impact is typically one tenth the amplitude of the underlying
Faraday wavefield. The relative amplitude of the background
and drop-generated wavefields is clearly a key parameter in
studying drop motion above the Faraday threshold.

A further increase in forcing acceleration (γ /γF � 1.12)
leads to longer transients thereby increasing the likelihood
of drop coalescence. Finally, the largest drops considered
(R > 0.45 mm, or � > 0.86 ) tend to bounce in place at the
onset of the Faraday threshold, but then undergo similar tran-
sitions, from erratic motion to trapping, and eventually erratic
bouncing and coalescence.

Figure 3(b) shows the regime diagram for 50 cS oil driven
at 50 Hz above the Faraday threshold. The observed dynam-
ical states are similar to those observed for the 20 cS–80 Hz
viscosity-frequency combination, but the transitions hap-
pen over a significantly smaller range of forcing accelera-
tions, as is evident in the different horizontal axis scales of
Figs. 3(a) and 3(b). We note that the range of droplet sizes
that can be levitated in this parameter regime is smaller.
Below the Faraday threshold, all droplets are walkers in
the drop size range considered. Just above the threshold,
smaller droplets (R < 0.38 mm, � < 0.50) meander, while
larger drops (R > 0.38 mm, � > 0.50) zig-zag. Stable droplet



096107-5 Tambasco, Pilgram, and Bush Chaos 28, 096107 (2018)

FIG. 5. (a) Erratic trajectories resembling two-dimensional Brownian motion for droplets of radius R = 0.376 mm vibrated at γ /γF = 1.01, corresponding to
the erratic regime in Fig. 3(a). The circle indicates the boundary of the bath. (b) The effective diffusivity D for the trajectories in Fig. 5(a) may be computed
from the long-time limit of the mean-squared displacement scaled by the non-dimensional time 4t/TF . The initial phase of ballistic diffusion (for t ≤ 15TF ) is a
transient effect resulting from the drop being initialized in a free walking state (at γ < γF ).

trapping is observed over a narrow range of forcing acceler-
ations (1.005 � γ /γF � 1.02). For larger γ , trapping states
become unstable, giving rise to erratic bouncing. Drops
of all sizes eventually coalesce for γ /γF � 1.04. Sponta-
neous droplet creation through interfacial fracture occurs for
γ > γR = 2.15γF .

IV. 2D EFFECTIVE DIFFUSION

Brownian motion may be characterized in terms of a
diffusion coefficient,

D = lim
t→∞

σ 2(t)

4t
, (4)

where σ 2(t) is the variance in position, or mean-squared dis-
placement, of many realizations of the associated random
walk as a function of time. We can thus compute the effec-
tive diffusivity in the erratic bouncing (blue) region in Fig. 3.
For each combination of droplet size and forcing acceler-
ation, we recorded 10 trajectories such as those shown in
Fig. 5(a) and calculated the corresponding mean-squared dis-
placement, which is shown to scale linearly with time in the
long-time limit [Fig. 5(b)]. We take the last 100 values of
the mean-squared displacement and use their mean to obtain
the effective diffusivity and their standard deviation for error
bars.

Over the relatively small parameter regime of interest
(see Fig. 3), the effective diffusivity depends only weakly on
forcing acceleration and droplet size. As γ increases, the dif-
fusion process is slightly enhanced, as suggested by Fig. 6(a).
Similarly, Fig. 6(b) suggests that smaller drops tend to diffuse
slightly faster than larger drops. We proceed by obtaining a
rough scaling argument for the dependence of diffusivity on
drop size and forcing acceleration by modeling the impact
of the droplet with the bath using a linear spring32 with a
spring constant proportional to the surface tension σ .42 A drop
of radius R and mass m = 4ρπR3/3 will have characteris-
tic speed v ∝ √

σ/ρR after impact, assuming a penetration
depth 
z ∼ R. The horizontal component of the drop’s veloc-
ity vx depends on the slope of the surface, which scales as
η/λF ∼ √

(γ /γF − 1) due to the supercritical bifurcation at
the onset of the Faraday instability;43 thus,

vx ∼
√

σ

ρR

η

λF
∼

√
σ(γ /γF − 1)

ρR
. (5)

Over one bounce, the droplet will traverse a characteristic
distance 
x = vxTF . Since the drop is changing directions
frequently in the erratic regime, on the time scale of the
bouncing, the characteristic time scale of direction change

FIG. 6. The observed dependence of the
effective diffusion coefficient D on (a) the
forcing acceleration γ /γF for a drop of
radius R = 0.376 mm and (b) the droplet
radius R for γ /γF = 1.031. Dashed
curves correspond to the effective diffu-
sivity obtained from scaling arguments,
Eq. (6). We note that surface diffusion
arises in a relatively narrow region of
parameter space (1.015 � γ /γF � 1.04)
for 20 cS–80 Hz configuration as shown
in Fig. 3(a), so only small variations in
the effective diffusivity are apparent.
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t = TF , yielding a scaling for the effective diffusivity

D ≡ (
x)2


t
= v2

xTF ∼ σTF

ρR
(γ /γF − 1) . (6)

The weak trends, evident in Fig. 6, of D increasing with
the distance from threshold (γ /γF − 1) and decreasing with
radius R are both consistent with this simple scaling. While
these trends are barely discernible over the limited parameter
regime accessible in the systems considered, they may have
some bearing in a more general pilot-wave setting.

V. DISCUSSION AND CONCLUSIONS

We have expanded the characterization of bouncing and
walking droplet dynamics, extending the regime diagrams for
20 cS–80 Hz and 50 cS–50 Hz configurations above the Fara-
day threshold. We classified the droplet dynamics into the
following regimes: trapped, coalescing, zig-zagging, mean-
dering, and erratic bouncing. The meandering and erratic
bouncing regimes were differentiated on the basis of the
dimensionless persistence length  = Lp/λF . At the onset of
the Faraday instability, while the drop’s pilot-wave is still
comparable in amplitude to the unstable background Faraday
wave, coherent motion (zig-zagging or meandering) arises,
characterized by a dimensionless persistence length  � 1.
As the forcing acceleration is increased further, the back-
ground Faraday wavefield dominates the pilot-wave, causing
the drop to change directions more frequently and abruptly so
that 0.1 <  < 0.5. The impact of the relative contribution of
the pilot-wave and the background Faraday wavefield on drop
dynamics in different geometric settings is a subject of current
interest. For example, we have recently considered the inter-
action of a walker and the wavefield generated by a circular
well, assessing the ability of the well-induced waves to trap
walkers.44

In Fig. 7, we summarize our results in a regime diagram
for levitating drops of 20 cS oil driven at 80 Hz that combines
Fig. 3(a) with the regime diagram presented in Fig. 11(d) of
Molácek and Bush.33 We note that the meandering and zig-
zagging regimes are a continuous extension of the walking
regime observed below the Faraday threshold. Likewise, the
erratic bouncing and coalescing regime arising for smaller
drops is simply a continuation of that below the threshold.
We note that the boundaries of the regime diagram are deter-
mined empirically. The form of previous regime diagrams was
rationalized through consideration of the dynamic interaction

between the bouncing drop and its wavefield.12,32,33 Below γF ,
the wave forms may be described in terms of a superposition
of linear waves, an assumption that breaks down at and above
the Faraday threshold. While providing theoretical rationale
for the behavior for γ > γF is thus not straightforward, it is
hoped that our study may serve to motivate and guide further
theoretical developments.

We have further characterized the emergence of Brown-
ian motion above the Faraday threshold. In the erratic regime,
when the bouncing of the drop is not synchronized with the
Faraday wave, the force imparted by the bath changes at
every impact in both magnitude and direction. This asyn-
chrony introduces an irregular component into the drop’s
trajectory, leading to motion that may be described in terms of
classical diffusion. While the diffusivity varies weakly over
the limited parameter regime accessible, we infer that it is
proportional to the forcing acceleration and inversely pro-
portional to the drop size, as suggested by simple scaling
arguments. We note that in a recent study, Hubert et al.45

have simulated and characterized diffusive walker behavior
below the Faraday threshold. Such diffusive-like behavior has
also been reported for walkers in corrals below the Faraday
threshold.8,41,46

If unperturbed by boundaries or applied forces, a walker
at γ < γF executes rectilinear motion at its free walking
speed. This simple base state might be taken as a shortcom-
ing of the walker system as a quantum analog system if one
assumes that quantum particles diffuse in some fashion. How-
ever, the solution of the time-dependent linear Schrödinger
equation for the probability density of a single free particle
initially localized to the extent possible given Heisenberg’s
uncertainty relation, 
p
x ≥ �/2, indicates ballistic diffu-
sion, for which the variance σ 2 ∼ t2. This solution is thus
consistent with the rectilinear motion of an ensemble of quan-
tum particles with initial positions and momentum distribu-
tions prescribed by the uncertainty relations. According to the
ensemble or statistical interpretation of quantum mechanics,47

quantum diffusion may thus be simply understood as resulting
from the uncertainty of the particle’s initial conditions.18 The
walker’s base state of rectilinear motion is thus not necessar-
ily a shortcoming of the system as a hydrodynamic quantum
analog, and its free walking velocity should be taken as the
analog of � k/m. It remains an open question as to whether a
stochastic forcing needs to be invoked in the walker system
to capture certain features of quantum mechanics, or whether
chaotic pilot-wave dynamics will be sufficient.

FIG. 7. An extension of the regime diagram obtained by
Molácek and Bush33 for 20 cS silicone oil driven at 80 Hz,
including droplet dynamics above the Faraday threshold, as
reported in Fig. 3(a). We delineate the parameter regimes as
a function of the dimensionless forcing acceleration γ /γF

and vibration number � = ω/
√

σ/(ρR3). Walkers transi-
tion into the meandering and zig-zagging regimes. Small
erratic bouncers (R < 0.2 mm, � < 0.31) tend to coalesce
just above the Faraday threshold, while large bouncers (R >

0.45 mm, � > 0.86) tend to drift until being trapped.
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