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Predictability in a hydrodynamic pilot-wave system: Resolution of walker tunneling
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A walker is a macroscopic coupling of a droplet and a capillary wave field that exhibits several quantumlike
properties. In 2009, Eddi et al. [Phys. Rev. Lett. 102, 240401 (2009)] showed that walkers may cross a submerged
barrier in an unpredictable manner and named this behavior “unpredictable walker tunneling.” In quantum
mechanics, tunneling is one of the simplest arrangements where similar unpredictability occurs. In this paper, we
investigate how unpredictability can be unveiled for walkers through an experimental study of walker tunneling
with precision. We refine both time and position measurements to take into account the fast bouncing dynamics
of the system. Tunneling is shown to be unpredictable until a distance of 2.6 mm from the barrier center, where
we observe the separation of reflected and transmitted trajectories in the position-velocity phase-space. The
unpredictability is unlikely to be attributable to either uncertainty in the initial conditions or to the noise in
the experiment. It is more likely due to changes in the drop’s vertical dynamics arising when it interacts with
the barrier. We compare this macroscopic system to a tunneling quantum particle that is subjected to repeated
measurements of its position and momentum. We show that, despite the different theoretical treatments of these
two disparate systems, similar patterns emerge in the position-velocity phase space.
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I. INTRODUCTION

A silicone oil droplet can bounce indefinitely on the surface
of a vertically vibrated oil bath provided that the vibrational
acceleration � cos(�t ) is sufficiently large. When the droplet
impacts the oil bath at half the driving frequency �/4π , the
resulting surface waves may, under some restrictive condi-
tions, propel the droplet along the bath surface. The dual
object composed of the droplet and its accompanying wave
field is called a walker [1,2]. Several works have provided a
characterization of single walkers from a hydrodynamic point
of view [3–7]. The waves surrounding the walker comprise
long-lived standing Faraday waves and relatively short-lived
traveling capillary waves. The drop acquires horizontal mo-
mentum by bouncing on its sloping waves. Walkers exhibit
several properties reminiscent of quantum particles, and their
dynamics is similar in form to that imagined by Louis de
Broglie in his double-solution pilot-wave theory [8].

The trajectory of a walker confined in a potential well or
by a Coriolis force self-organizes along quantized periodic
orbits [9–12]. In a cavity, a walker moves chaotically, and
its emergent statistics is comparable to that calculated from
Schrödinger’s equation [13,14], provided the Faraday wave-
length λF of the walker is identified with the de Broglie
wavelength λdB of the quantum particle [8]. However, the
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analogy is currently less clear in the case of the double-
slit interference experiment, for which the walker’s emergent
statistical behavior is neither quantum mechanical nor purely
classical [15–18].

In this article, we address the question of unpredictability
in an experimental configuration proposed as a macroscopic
analog of quantum tunneling [19–21]: a walking droplet is
launched toward a submerged boundary that it may cross
or not (see Fig. 1). The first experimental demonstration of
walker tunneling was done by Eddi et al. [19]. Single Walkers
were repeatedly confined in a rhomboidal cavity divided in the
middle by a submerged barrier. They showed that the crossing
probability (i.e., the number of crossing events divided by the
number of crossing attempts) is not a step function of the
walker velocity as it would be in classical point mechanics.
Nevertheless, the walker dynamics is fully deterministic: the
probabilistic description only reflects a limited knowledge of
the system [22–25].

This experiment has been analysed theoretically by Hubert
et al. [21] and Nachbin [20]. Hubert et al. [21] showed that one
possible reason for the “unpredictable tunneling” of walkers
was the lack of control of initial parameters such as the
droplet velocity (which was controlled at ±5% in the original
experiment) and the incident angle. Nachbin [20] examined
experimentally a simplified one-dimensional confined version
of walker tunneling and showed that the wave construction
in the second cavity may allow the walker to cross the
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FIG. 1. Illustration of the experiment. (a) Artistic view of a walker sent toward the barrier (not to scale). The barrier is a submerged
boundary of width w and depth Hb (inset). (b) Snapshots of a reflected trajectory. (c) Snapshots of a transmitted trajectory. Top views of the
droplet in panels (b) and (c) are taken at 8 Hz. The scale bar is 1 cm and the barrier position is shown with dotted lines.

barrier. Both theoretical studies describe walker tunneling, but
rationalize the observed unpredictability on different physical
grounds, variability of initial parameters or the peculiar build-
up of the wave-field before crossing the barrier.

In this paper, we compare the level of noise to the intrinsic
sensitivity of the walker tunneling experiment. Is noise re-
sponsible for “unpredictable” tunneling? Does unpredictabil-
ity emerge from the non-Markovian and possibly chaotic
dynamics of the walker? To what extent can one predict that
the walker will be transmitted or reflected based on some
cross section of the phase space? We begin by reproducing
walker tunneling in well controlled experimental conditions.
Subsequently, we analyze the effects of external parameters
and the measurement process on the accuracy of our results.
We then describe the intrinsic variability of the walkers and
stress the undercharacterization of the system by position and
velocity only. Finally we analyze quantum tunneling with the
repeated measurement formalism that allows for comparison
with the walking droplet system. We show that in both cases,
the predictability of the system increases only at the foot of
the barrier.

II. EXPERIMENTAL SETUP

We refined the walker tunneling experiment initially per-
formed by Eddi et al. [19]. Laser-cut PMMA pieces were
glued to the bottom of a reservoir and submerged with oil.
Neither swelling nor deformation of the plastic pieces were
observed during and after the experiment. The barrier to be
tunneled consisted of a thin plastic piece placed at the center
of the oil bath. The dimensions of the submerged plastic
pieces are reported in Fig. 2. The geometry of the submerged
boundaries is different from that reported in Eddi et al. [19].
It ensures that the droplet is far from other boundaries when
interacting with the barrier. The liquid depth varied depending
on the region considered. Above the circular boundaries (gray
region in Fig. 2) and the launching pieces (white regions in
Fig. 2), the liquid depth was a few hundred microns, ensuring
rapid local wave damping. The depth was Hb � 1.2 mm above
the barrier and H = 6.5 mm elsewhere, see Table I.

Both bath and drop were composed of silicone oil of
viscosity ν = 20 cSt at 25◦C, surface tension γ = 20 mN/m
and density ρ = 956 kg/m3 (Table I). The bath was shaken at
�/2π = 80 Hz which corresponds to a Faraday wavelength
λF = 4.75 mm [7]. Vertical vibrations were produced with
a DataPhysics V55 electrodynamic shaker. A rod and an
air bearing carriage were fixed on top of the shaker to en-
sure reduced lateral vibrations (less than 2.5% of the ver-
tical vibrations) [26]. Vertical accelerations were measured
by a pair of miniature accelerometers (PCB 352C65) and
feedback controlled with a home-made Labview software. A
DAQ (NIUSB-6343) and an amplifier (PA300E) were used
to acquire the acceleration signals and drive the shaker, re-
spectively. The generated signal had a variation 	�/� <

0.02% in frequency and the accuracy on shaking accelera-
tion was 	� = 0.002 g, which represents a relative error of
	�/� � 0.05%.

The droplet was formed by a piezoactuated droplet dis-
penser detailed in Ref. [27]. At this step, the droplet simply
bounced on top of the bath but did not walk. To eliminate the
influence of ambient air currents [17], the top of the bath was
sealed with an anti-reflective acrylic lid. This precaution also
guarded the droplet from dust, thus minimizing the chance
of rogue coalescence events. To further extend the life of the
droplet, special care was taken to clean all surfaces in contact
with oil when the experiment was set up. In our experiment,
the droplet could thus bounce for more than 12 h without
coalescing with the underlying bath.

Prior to experiments, the bath was shaken at �/2π =
80 Hz with a shaking acceleration of � = 4 g for 2 h, to be
warmed up. This prevented any significant thermal drift dur-
ing the course of the experiments. The Faraday threshold was
then measured by increasing � until Faraday waves appeared
at the liquid surface, at �F � 4.4 g. The shaking acceleration
was then set back to � = 2 g.

Subsequently, the shaking acceleration was increased to
� > 3.8 g, beyond the walking threshold. At this point, the
droplet walked on the bath surface and followed the path
prescribed by the submerged pieces (see Fig. 2). The latter
were arranged so as to send the walker normal to a submerged
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FIG. 2. (a) Experimental setup. (b) Arrangement of the submerged pieces in the bath (Top view) and sketch of a transmitted trajectory.
(1) Submerged plastic piece. (2) A narrowing channel guides the droplet toward the launching channel. (3) Launching channel. The droplet
oscillates horizontally at the entry then walks straight. (4) Barrier of width 2 mm. (5) Shallow boundary on which waves are strongly damped.
The liquid depth was H = 6.5 mm in the black region, Hb = 1.2 mm on top of the barrier and less than 0.5 mm above other white and gray
regions.

barrier of width w = 2.00 ± 0.02 mm. The associated waves
were highly damped above the barrier since the oil depth Hb

on the barrier was only a few times the thickness of the viscous
boundary layer (∼300 μm [7]). The wave-induced speed of
the walker was thus reduced by the barrier, which had an
effect similar to that of a potential barrier. The impinging

walker could either cross the barrier or be reflected. This
cavity allowed us to repeatedly send the same walker toward
the barrier with a very similar trajectory. After a crossing
attempt occurred, the walker moved to the side channels, then
to the launching channel where it was again directed toward
the barrier for the next crossing attempt.

TABLE I. Table of parameters.

Value Parameter

�/2π 80 Hz ±0.02% Shaking frequency
� 4g ±0.05% Shaking acceleration amplitude
�F 4.4g ±0.2% Faraday threshold
H 6.5 mm ±1.5% Liquid depth
Hb 1.24 mm ±2% Liquid depth above the barrier
w 2 mm ±1% Barrier width
R 420 μm ±5% Drop radius

Vw 12.1 mm/s ±1% Free walking speed
θi 0.85o ±1.2% Incident angle

λF 4.75 mm Faraday wavelength
ξ 8.1 mm Wave field damping length
σ 20 mN/m Oil surface tension
ν 20 cSt Oil viscosity
ρ 956 kg/m3 Oil density

v Instantaneous walking speed
vy Instantaneous y-axis walking speed
θ Instantaneous trajectory angle
φ Impact phase
〈·〉 group average

DM Demix distance
λdB de Broglie wave length
� Shrödinger probability wave
χn,l Projector function
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FIG. 3. Transmission probability as a function of shaking ac-
celeration �. The number of launches recorded to establish the
probability is reported for each point. The dotted line is a guide for
the eyes.

We chose to work with a relatively fast droplet to minimize
its transit time around the pool. To avoid any unwanted chaotic
bouncing, we considered a droplet walking in the (2, 1)2

mode for an acceleration � � 3.9 g. This fixed the vibration
number �/

√
γ /ρR3 at about 0.95, where R is the drop radius

(see Ref. [[8], Fig. 2]). The desired drop diameter was then
2R � 840 μm, which set the free walking speed Vw in the
range 12–14 mm/s (see Ref. [[28], Fig. 4.13]).

The proximity to threshold was M = �F /(�F − �) � 7.2.
The associated memory Me (i.e., the number of bounces that
actually compound the wave field) was 5.8, computed with the
formula found in Ref. [[7], Eq. (2.65)]. We chose to work in
this regime of relatively low memory to limit the spatial extent
of the Faraday waves and to ensure that the waves created by
the walker in the experimental zone were completely damped
during its passage in the side channel. The damping length of
the waves computed with Ref. [[7], Eq. (2.60)] is ξ = 8.1 mm
in front of the droplet (θ = 0), ξ = 8.9 mm on its side (θ =
π/2) and ξ = 9.9 mm in its rear (θ = π ).

Since the Faraday threshold �F , the height of liquid above
the barrier Hb and the droplet diameter 2R were difficult
to modify from one experiment to the next, we adjusted
the shaking acceleration � to get a 50% transmission for
both experiment. We report the exact values of these four
parameters (�,�F , R, Hb) for the two different experiments
when mentioned. Other parameters were unchanged.

Data were acquired with a high-speed camera (Photron
SA5 monochrome) at 4000 Hz. A 105mm lens and a tele-
converter were mounted on the camera. The image size was
1000 × 1024 pixels, each pixel imaging a square of side
length 31 μm. The lighting and the camera view were both
from the side and top by virtue of a semi-reflective mirror,
as in the experimental arrangement described in Ref. [24].
The powerful LED lights were switched on a few seconds
before the image acquisition started, then switched off at the
end of the recording. The lighting time of each event was thus
less than 30 ± 3 s, which limited heating of the bath. The room
temperature was measured after each recorded trial.

Images were processed as follows. (i) The time at which the
amplitude of Faraday waves was minimum was deduced from
the standard deviation of the distribution of pixel gray levels.
This time defined the reference clock. (ii) A low precision
detection of the droplet was performed with image gradient
and image thresholding tools. (iii) We detected the radius of
the crater formed by the impacting droplet by means of circle
detection tools. The radius of the crater increased linearly
with time directly after each impact. This time evolution was
fitted to determine the exact impact time, as in Ref. [24]. The
impact phase corresponds to the phase at which the droplet
lands on the bath regarding the reference clock at a frequency
�/4π = 40 Hz. (iv) Finally, we detected the impact point
with high accuracy using a pattern matching technique.

III. OBSERVATIONS

A. Crossing probability

Eddi et al. [19] did their experiment with several different
droplets to vary the walker speed. For the sake of reducing
variability between successive crossing attempts, we worked
with only one droplet. We changed the incoming speed of the
walker by tuning �. This preliminary experiment was made
with Hb = 1.17 ± 0.025 mm, �F = 4.37 g and a droplet of
diameter of 2R = 750 μm. The ratio of the number of crossing
events to the number of crossing attempts defines the crossing
probability reported in Fig. 3. For the geometry and drop
size considered, these experimental precautions limited the
transition range for unpredictable crossing of the barrier to
between 3.94 g (where everything was reflected) and 4.01
g (where everything was transmitted) corresponding respec-
tively to droplet velocities of 11.8 and 12.2 mm/s.

Our observations confirmed the “unpredictable tunneling”
observed by Eddi [19], but the range of walking speeds
was strongly reduced from around 4 mm/s in the Eddi’s
experiment to 0.4 mm/s here. The reduction of the variability
in the initial conditions led to a smaller transition range,
confirming that such variability played a large role in the
crossing probability reported in the experiments of Eddi
et al. [19]. In the following sections, we will show that
our experiment is sufficiently well-controlled to distinguish
if “unpredictability” comes from the variability of external
parameters or if it is an intrinsic feature of walkers.

B. Walker trajectory at 50% crossing probability

To explore the nature of walker tunneling, we measured
the trajectories of walkers incoming on a barrier with a cross-
ing probability of 50% as arose with � = 3.81 g ± 0.002 g,
Hb = 1.24 ± 0.025 mm, �F = 4.426 g, and droplet diameter
2R = 840 μm. The same droplet was sent 49 times toward the
barrier. Figure 4 shows the superposition of the 49 launches
and indicates the high reproducibility of the launching pro-
cess. Specifically, the beam formed by the incident trajectories
had a width of 40 μm and an incident angle θi relative to
the normal to the barrier of 0.8◦ ± 0.1◦. The high-speed
camera recorded the walker’s impact position and time with
a precision of 3 μm and 0.25 ms, respectively.

Far from the barrier, reflected and transmitted trajectories
are not discernible as they are completely mixed in the (x, y)
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FIG. 4. (a) Trajectories in physical space. The reflected trajectories are in black, the transmitted trajectories in red. Points indicate the
location of each impact between the droplet and the liquid surface. Green inset: close-up view of the beam of trajectories far from the barrier.
The half-width of the beam is 20 μm. Blue inset: close-up view of the trajectories above the barrier. Orange inset: close-up view of the impact
positions at the barrier rim. (b) Trajectories of walkers in the position-velocity phase space. Green inset: close-up on velocity fluctuations. Blue
inset: close-up on the separation point.

space [see Fig. 4(a), green inset]. Trajectories are still indis-
cernible when stepping onto the barrier (orange inset). The
trajectories remain indiscernible until x = 0.05λF (0.25 mm)
just before the center of the barrier, where they separate (blue
inset).

A typical representation of the system in the position-
velocity phase space is shown in Fig. 4(b). Sufficiently far
from the barrier (x > 3λF ∼ 15 mm), the trajectories form a
beam. The approach speed is constant with no fluctuation. We
define the free walking speed Vw as the mean speed of the
walker in the range 3λF < x < 5λF . At a distance of x ∼ 3λF ,
the walker speed starts fluctuating in a repeatable manner.
For x < 2λF , it decreases and some fluctuations persist. Fi-
nally, the speed almost vanishes when the droplet reaches the
barrier’s midpoint [Fig. 4(b), blue inset]. The beam trajectory
cleanly separates into reflected (black) and transmitted (red)
trajectories before stepping on the barrier. We note that during
the approach to the barrier the trajectories intersect each other
in the position-velocity phase space (Fig. 5). This provides
clear evidence of the undercharacterization of the system by
position and velocity only, since the horizontal dynamics of
walkers is known to be non-Markovian and their vertical dy-

FIG. 5. Four trajectories in the position-velocity phase space.
The ensemble speed average 〈v〉 has been subtracted from the
original data to deduce speed fluctuations, v − 〈v〉.

namics is not taken into account. Furthermore, some walkers
that are faster than the ensemble mean 〈v〉(x) are reflected
whereas some that are slower are transmitted, indicating the
shortcomings of classical mechanics of pointlike particles in
describing the tunneling behavior when the pilot-wave field is
not considered.

C. Long-range effect of submerged boundaries

The repeatable fluctuations of the walker speed starting at
about 3λF [see Fig. 4(b)] may be attributed to the influence
of the barrier on the waves. Indeed, the attenuation factor
of a wave perfectly reflected by a barrier at a distance x is
approximately exp(−2x/ξ ), where ξ = 1.7λF ∼ 8.1 mm is
the wave damping length in front of the walker. Assuming that
the walking speed v is proportional to the wave amplitude,
one expects the speed variations relative to the free walking
speed Vw also to be of the order of exp(−2x/ξ ). At x =
3λF , we expect these relative fluctuations to be of the order
of ±2.5%. This order of magnitude is comparable to that
observed ∼ ± 0.25 mm/s, corresponding to 2.1% of the free
walking speed Vw [see Fig. 4(b), green inset]. Therefore, these
fluctuations reflect the wave-mediated nonlocal influence of
the barrier on the walker.

For the 49 launches with the same droplet, we observed
some slight differences. The distribution of free walking speed
Vw is reported in Fig. 6. It has a standard deviation σ [Vw] of
150 μm/s corresponding to 1% of the ensemble mean walking
speed 〈Vw〉. We observed that these variations are actually
correlated with small variations of impact phase (Fig. 7).

Actually, droplets were launched from a channel of half-
width λF , which is smaller than the damping length ξ . There-
fore, the effect of such initial confinement was very strong
(the damping length of the walker waves in free space is
greater than 1.7λF ) and it may have changed the droplet
vertical dynamics. We observed that between different trials,
the walker was launched with slightly different impact phases
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FIG. 6. Distribution of free walking velocities Vw . Red: Trans-
mitted trajectories. Black: reflected trajectories.

φw. These differences persisted as the droplet approached
the barrier (Fig. 8). Droplets bouncing with different phases
impact a wave with a different slope. Thus, they receive a
different horizontal kick and they move at a different speed
Vw. The variations of free walking speed Vw are thus most
likely associated with the preservation of the impact phase φw

inherited from the interaction with the launchers.

D. Oscillations of the probability density function

The probability density function (PDF) is defined as the
time spent by walkers of the experiment at a given position.
In several settings, including corrals [13,14] and a recent
analogy of Friedel oscillations [29], correlations between
droplet speed and position have led to the emergence of
coherent, quantumlike statistical patterns. We briefly explore
such a possibility in walker tunneling. The PDF of incoming
and reflected walkers is plotted in Fig. 9, for the range x ∈
[2λF , 3λF ] in which the speed oscillates without decreasing
significantly. The constant component of the PDF, denoted
PDFw, is removed with a high-pass filter. PDFs of both incom-
ing and reflected walkers show oscillations with wavelength

FIG. 7. Positive correlation between the free walking speed Vw

and the free impact phase φw . Both quantities are averaged from
instantaneous quantities, v and φ, for impact distances in the range
3λF < x < 5λF .

FIG. 8. Deviation of the impact phase from its ensemble average
in the interval 15 < x < 20 mm from the barrier center (x = 0)
plotted against the same deviation in the interval 20 < x < 25 mm.

of approximately λ/3 that are phase-shifted by half a period.
This phase shift is consistent with that arising for reflected
waves, and acts to suppress a coherent statistical signature
of the form reported elsewhere [13,14,29]. Droplet speed
variations for transmitted trajectories could not be computed
because transmitted trajectories were beyond the field of view.

E. Motion in the lateral direction

The incident angles θi are reported in the inset of Fig. 10(b).
As noted previously, the walker was launched onto the barrier
with a slight incident angle 0.81◦ ± 0.1◦ owing to technical
difficulties associated with making perfect normal launches.

FIG. 9. High-pass filtered probability density function
(PDF-PDFw) of incoming and outgoing walkers resulting from their
velocity fluctuations. Blue: incoming trajectories. Black: outgoing
reflected trajectories.
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FIG. 10. (a) Evolution of the mean y position of transmitted (red)
and reflected (black) trajectories. Inset: plot of the difference of mean
y position as a function of distance to the barrier. (b) Evolution
of the trajectory angle θ . The gray dashed line corresponds to
the mean incident angle θi far from the barrier. Inset: Distribution
of incident angles. Red: Transmitted trajectories. Black: reflected
trajectories.

This small angle exists because the walker has a small velocity
component in the y direction Vy � Vx. The average y position
of all transmitted and reflected trajectories is represented as
a function of the distance x to the barrier in Fig. 10(a). No
shift is directly observed, which suggests that the switch
between reflection and transmission is not directly related to
θ . Now considering the difference of the mean y position
of the transmitted trajectories with the mean y position of
the reflected trajectories [inset Fig. 10(a)], we observe that
the separation occurs at 0.45 mm from the barrier center, so
already above the barrier.

Before the walker reaches the barrier, the trajectory angle
θ also slightly varies along the walker trajectory due to the
waves interaction with the barrier [Fig. 10(b)]. When the
walker arrives close to the separation point at 0.25 mm from
the barrier center, it moves momentarily along the barrier

FIG. 11. (a) Exponential divergence of the physical distance
between two initially close trajectories with different outputs (Vw =
12.196 mm/s with initial speed difference about 0.1%). Inset: lin-
log representation of the divergence. The slope corresponds to the
Lyapunov exponent. Red star (∗) corresponds to the point at which
the walker steps onto the barrier. (b) A and B: gray images of the
wave field 1 and 2 far from the barrier, at the beginning and after the
separation. C: Differences of intensity between images of the wave
field 1 and 2.

θ � 90 ◦. After the walker is either transmitted or reflected,
θ is again reduced in amplitude.

The small incident angle slightly increases the distance the
walker has to travel above the barrier which would correspond
to an increase of the perceived barrier width of 	w/w =
10−4. Furthermore, the effect of incident angles on the pen-
etration depth of walker has been observed by Pucci et al.
[30]. They showed that when the incident angle is increased,
so is the probability to be reflected by a barrier. Thus, a small
deviation on incident angle could slightly increase the critical
speed required to cross the barrier.

F. Divergence of trajectories above the barrier

The separation distance 	(t ) =√
[x1(t ) − x2(t )]2 + [y1(t ) − y2(t )]2 between two similar

trajectories 1 and 2 with free walking speed Vw =
12.196 ± 0.013 mm/s is plotted in Fig. 11(a). This distance
is almost constant far from the barrier and increases
exponentially on the barrier as seen in a lin-log plot
[inset Fig. 11(a)]. The slope corresponds to the Lyapunov
exponent. This divergence is also strongly marked on the
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wave fields, Fig. 11(b). While this exponential divergence is
not necessarily a proof of chaos, it at least suggests that the
barrier acts as a saddle point in the phase space of the walker.

IV. ANALYSIS OF THE UNPREDICTABILITY

A. Distinguishing between possible causes of unpredictability

Our experiment, although better controlled than previously
reported tunneling experiments [19], remains unpredictable.
The small variations of initial parameters lead to markedly
different outcomes: transmission or reflection. Three differ-
ent physical paths may lead to this behavior for a dynamic
system (i) First, in classical point mechanics, the barrier is
seen as a saddle point that reflects low-velocity trajectories
and transmits high-velocity trajectories. The unpredictability
may then come from an insufficient knowledge of the initial
conditions [Fig. 12(a)]. For instance, if the initial velocity
is known within uncertainty bounds (red-black striped initial
box) that overlap the single manifold separating reflected and
transmitted trajectories, then the barrier crossing cannot be
predicted. (ii) Second, some variability may also come from
external noise during the experiment (such as ambient air
currents) which may switch the particle trajectory from one
side of the manifold to the other [Fig. 12(b)]. (iii) The path
to unpredictability is chaos: any small change in the initial
conditions may give different outputs. The difference with a
simple saddle-point is that owing to stretching and folding,
the phase space of a chaotic system appears fractioned into
a myriad of small basins of attraction for each output. Even
if we know the initial conditions extremely well, the lack of
knowledge of their exact value may yield “unpredictable” re-
sults. Transmitted and reflected trajectories then appear mixed
at a scale larger than the measurement uncertainty (small red
stripped box); they then sort out at the foot of the barrier
[Fig. 12(c)].

To distinguish between these possible sources of apparent
unpredictability, we first review the magnitude of experimen-
tal variability and precision measurement. Second, we analyze
the intrinsic variability of walkers impinging on a submerged
barrier.

B. External sources of variability

As the problem of crossing the barrier may be subjected
to small uncontrollable changes from external parameters, for
instance the change of free walking speed, we focused on (i)
the precision of our measurements and (ii) the quantification
of uncontrollable fluctuations that may influence the experi-
ment.

The uncertainty on the initial walking velocity can be
decreased until 	Vw/Vw < 0.03% by considering several im-
pacts (see Appendix A). We thus reject scenario (i) since
initial walking velocity Vw is known with a good accuracy
compared to the group dispersion of walking speeds �1%,
Fig. 6(a).

Figure 5 has already shown that scenario (ii) is unlikely,
since the initial speed difference between incoming walkers
seems to be preserved until they get very close to the barrier.
Moreover, we analyzed the speed fluctuations around the
instantaneous group speed (v − 〈v〉)/〈Vw〉 in the constant

FIG. 12. Schematic of causes of unpredictability in the position-
velocity phase-space. (a) Large uncertainties on the initial conditions
for a classical saddle-node bifurcation. (b) Noise-induced variations
before and above the barrier. (c) Chaos-induced unpredictability
resulting from fractal basins of attraction. Additional dimensions
of the phase space could be associated with bouncing phase, for
instance.

velocity region (5λ f > x > 3λF ) for each trajectory. These
fluctuations have a standard deviation of σ [(v − 〈v〉)/〈Vw〉] =
0.09%, much smaller than σ (Vw ) = 1% of the total speed
range of the group. The noise level in our experiment was
thus insufficient to force trajectories to randomly cross the
manifold during the approach to the barrier. We can thus reject
the noise-induced unpredictability, scenario (ii), which was
avoided here because the bath was protected from air currents
with a lid. Although no signal appears in the distribution
of velocity variations, some other possible external sources
of variability are analyzed in Appendix B. Among them,
temperature variations of the bath could significantly modify
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FIG. 13. Cross sections of the phase space of a walker at a distance of 23 mm (4.84 λF ) from the barrier. Speeds and angles were averaged
over 11 successive impacts. (a) Position vs speed. (b) Position vs trajectory-angle. (c) Velocity vs trajectory-angle.

the Faraday threshold, and subsequently the walker dynamics.
Although these variations have not been directly measured,
we present theoretical arguments in Appendix B that suggest
that they were limited and did not likely modify the walker
dynamics in our experiments.

C. Analysis of intrinsic variability

1. Trajectories in the phase space

As the measurement error and the sources of noise are now
quantified, we can proceed with a deeper analysis of the basins
of attraction of reflected and transmitted trajectories.

The phase space to consider consists of the variables that
describe the incoming walker in the free walking zone, namely
the walker speed v, the trajectory angle θ , and the bouncing
position x. Since the impact phase φ is correlated to the walker
speed v in the free walking zone, we do not consider it to
be an independent dimension of the phase space. Similarly,
the phase space does not include any specific dimension
associated with the waves. Indeed, as the damping time of
the waves is 0.14 s and the damping length 8.8 mm, waves
either emitted during previous passages of the walker (several
seconds before) or reflected from the boundaries (several
centimeters away) are fully damped in the free walking zone.
The wave field is therefore entirely prescribed by (x, v, θ ).

The three two-dimensional cross-sections of this three-
dimensional phase space are represented in Fig. 13, for in-
coming walkers at a distance x ∼ 4.8λF from the barrier.
At this distance, distributions of reflected and transmitted
trajectories appear to be fully mixed. Again, the region in
which they overlap is much wider than the measurement error
bars, confirming that scenario (i) of Sec. IV must be ruled out.

To confirm scenario (iii), we try to determine the dis-
tance from the barrier at which the distributions of reflected
and transmitted trajectories become distinguishable (i.e., un-
mixed) in the phase space (x, v, θ ) of the incoming walker.
This discernability is quantified with the p-value of a two-
sample t-test, which represents the probability that the ob-
served difference between distributions is due to chance.
We first perform this test in each dimension of the phase
space separately, at different distances x from the barrier
[Fig. 14(a)]. We consider that distributions are distinguishable
(i.e., reflected and transmitted trajectories are separated) when
p < 2%, and we define the demix distance D as the minimum
distance from the barrier center below which p is systemat-
ically less than 2%. For example, the demix distance based
on speed measurements is Dv = 0.23λF . In other words, one
could predict if a walker would be reflected or transmitted

based on one measurement of its speed v only if this measure-
ment is performed when the walker is already on the barrier,
at x < Dv = 0.23λF . The demix distances associated with x
and θ are Dx = 0 and Dθ = 0.2λF , so x and θ , considered
separately, are worse predictors of the walker’s outcome.

We may expect that measuring more than one variable
among (x, v, θ ) would provide more information, and possi-
bly allow one to predict the outcome earlier. This intuition
is illustrated with the (x, v) cross-section at x � 0.22λF from
the barrier center, represented in Fig. 14(b). Clearly, the exact

FIG. 14. (a) p-value of two-sample t-tests to distinguish reflected
and transmitted walker trajectories. Green: p-value computed with
the velocities v. Blue: p-value computed with the trajectory-angles
θ . Black: p-value computed with the impact positions. (b) Impact
position–Velocity cross section of the phase space of the crossing of
the barrier by a walker at a distance of 1 mm (0.22λF ). (c) p-value
of the PCA analysis in the (x, v) cross section (black) and in the
complete (x, v, θ ) space (light gray). In both panels (a) and (c), red
star (∗) denotes DM , the demix distance.
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TABLE II. Demix distances DM as a function of the phase-space
cross-section considered.

Phase space x v θ x-v x-θ v-θ x-v-θ

DM (mm) 0 1.1 0.95 2.6 0.95 1.1 1.85
DM/λF 0 0.23 0.20 0.55 0.20 0.23 0.39

knowledge of x alone is insufficient to know if the walker
will be reflected or not, since Dx < 0.23λF . Similarly, the
exact knowledge of v alone is barely sufficient to reasonably
predict the outcome, since Dv � 0.23λF . Figure 14(b) reveals
that reflected and transmitted trajectories are already well
separated in the (x, v) plane. However, the manifold that
separates them is not uniquely defined in terms of either x or
v, but rather as some linear combination of x and v.

More generally, at each distance to the barrier, there is a
direction in the phase space that maximizes the separation
of reflected and transmitted trajectories. We determined this
direction with principal component analysis (PCA), then per-
formed the two-sample t-test in this direction. The calculated
p-value is represented as a function of the distance to the
barrier in Fig. 14(c). The corresponding demix distance is
reported in Table II, for phase spaces comprising different
combinations of x, v, and θ . The phase space (x, v) yields the
largest demix distance, at 0.55λF from the barrier center (i.e.,
0.3λF from the barrier edge). Owing to the relatively large
error on θ , the demix distance in the full (x, v, θ ) space is not
larger than that in the (x, v) space.

2. The role of impact phase

Trajectories are only sorted close to the barrier, which sug-
gests that the barrier may act as a source of chaos. One further
argument consistent with chaos involves the impact phase φ

(Fig. 15). While the latter is nearly constant throughout the
approach it dips at x � 0.5λF then increases sharply above the
barrier. The variation of the impact phase close to the barrier
reflects a significant change in the drop’s vertical dynamics,
as is induced by the barrier’s influence on its guiding wave.

The end of the unpredictability is simultaneous with varia-
tions of the impact phase. As the drop approaches the barrier,
it responds to increased barrier-induced perturbations of its
Faraday wave field.

In a previous study, we showed that changes in vertical
dynamics during the interaction of two droplets may intro-
duce chaos into the walker system [24]. In particular, we

FIG. 15. Impact-phase vs distance to the barrier. Red: transmit-
ted trajectories. Black: reflected trajectories.

showed that the onset of chaos in interacting walking pairs
was triggered by a change of impact phase of about 0.2 rad
which is of the same order of magnitude as the 0.12 rad
perturbation evident in Fig. 15. It thus seems likely that the
walker trajectory becomes chaotic in the immediate vicinity
of the barrier, which explains why its outcome cannot be
predicted sooner.

V. COMPARISON WITH QUANTUM TUNNELING

The walker system has been considered as a hydrodynamic
quantum analog although there is no doubt that the nature of
walking droplet is different from that of a quantum particle
[8,9,12,13,19]. We proceed by examining the possibility that
tunneling in both systems leads to similar results in terms of
distance at which the system becomes predictable.

In quantum mechanics, the particle is modeled by its
statistical wave function �. In the case of a square barrier of
potential U0 larger than the initial kinetic energy of the quan-
tum particle E , the particle may tunnel with a transmission
coefficient,

T = 4E (U0 − E )

4E (U0 − E ) + U 2
0 sinh(

√
2m(U0 − E )w/h̄)

, (1)

where w is the barrier width and m the particle mass [31]. We
cannot obtain any certain indication about the fate of a single
particle.

In the Copenhagen interpretation of quantum mechanics,
the trajectory of a quantum particle is not defined. One way to
approximate the trajectory of an individual quantum particle is
to perform repeated measurements on its position and momen-
tum [32–34]. Repeated measurements have two main effects.
First they relocalize the statistical wave around the last mea-
sured position of the particle, introducing thereby a pseudo
locality of the waves. Second, the repeated measurements
introduce significant noise due to the random projections of
the wave function onto the projectors. We here perform a
numerical simulation of tunneling particles for which position
and momentum are repeatedly measured.

We consider a particle of wavelength λdB and momentum
2π h̄/λdB. We define a set of basis functions

χn,l (x) = 1√
L

sin(2π (x − nL)/L)

2π (x − nL)/L
e2ilπx/L, (2)

to be used as projectors for a quantum measurement, where
L = 3λdB. A projection onto the state χn,l indicates that the
particle is on average, after this measurement, located at the
position x = nL and propagates with the momentum p =
l (2π h̄/L) with respective uncertainties σ [x/λdB] = ∞ and
σ [p/(h/λdB)] = 1/(3

√
6). The respective uncertainties indi-

cate that the quantum particle may be subjected to large jumps
in position but not in momentum. This set of basis functions is
both orthonormal and complete on R. For numerical reasons,
n and l are restricted to [−50, 50].

We consider a quantum particle launched toward a barrier
of potential U (x) = U0 exp(−x2/w2) with w = 2L and U0 =
241h̄2/mL2. The potential U0 matches the kinetic energy
of a particle of wavelength λ = L/3.5 (E = 2π2h̄2/mλ2) to
ensure almost equal probabilities of reflection and transmis-
sion when the particles are launched with momentum p =
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FIG. 16. Spatial probability density function of the initial states
of the quantum simulation, �(0, x) = χ10,·(x). Inset: zoom on the
projector around its mean value.

−6π h̄/L. We assume that the first detection takes place on
the projector of �(0, x) = χn0,l0 (x) with n0 = 10 and l0 =
−3, which prescribes the initial conditions of the numerical
experiment (Fig. 16). The wave packet evolves according to
the Schrödinger equation,

ih̄
∂�

∂t
= − h̄2

2m

∂2�

∂x2
+ U (x)�(x, t ). (3)

After a time interval τ = 0.05L2m/h̄, the particle is measured.
This time interval is chosen so that the particle moves by
an average distance of τ p/m = 0.94L which roughly corre-
sponds to the distance between two consecutive projectors.

In the simulation, the measurement consists of projecting
the wave function �(x, t + τ−) onto the above measurement
basis. In perfect accordance with quantum theory, the outcome
�(x, t + τ+) = χn,l of this randomly simulated measurement
process is obtained with the probability

Pn,l =
∣∣∣∣
∫ ∞

−∞
χ∗

n,l (x)�(x, t + τ )dx

∣∣∣∣
2

. (4)

The wave function �(x, t + τ−) instantaneously collapses
onto a single projector state �(x, t + τ+) = χn1,l1 (x). To de-
fine a quantum trajectory, this process is repeated 20 times to
get �(x, t + 20τ+) = χn20,l20 (x).

With this procedure, we simulated 1000 trajectories as
shown in Fig. 17(a). The trajectories start from a pure χn0,l0
state corresponding to the first measurement done on a Gaus-
sian wave packet. The trajectories separate above the barrier,
in a manner reminiscent of walkers in Fig. 17(a). As we did
for walkers, we compute the p-value of the two-sample t-test
between the two distributions of transmitted and reflected
trajectories for each position. The p-value is displayed in
Fig. 17(b).

We determine the demix distance DM as the distance from
the barrier center where p < 2%. We repeated this numeri-

FIG. 17. (a) Trajectories of quantum particles in the position-
momentum phase space. Red: transmitted trajectories. Black: re-
flected trajectories. Each box corresponds to a specific projector
χn,l . The total number of detected trajectories is represented by the
width of the beam in the box. The reflected/transmitted ratio is
represented by the relative magnitude in black and red in the box.
The box dimensions indicate the difference between the position and
momentum mean values of two consecutive detectors. (b) p-value
computed on distributions of transmitted and reflected trajectories
of quantum particles obtained by numerical simulation. Red star (∗)
indicates the demix distance DM .

cal simulation with variable barrier width w and found that
DM ∼ w (see Fig. 18). This result is in accordance with what
we obtained for walkers, although observations could not be
made for the same ratio of barrier width to wavelength. This
similarity is not trivial, since the demix distance could have

FIG. 18. Demix distance as a function of barrier width, as com-
puted from our quantum simulations. Red square: walker experi-
ments for which we nondimensionalize by λF rather than λdB.
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instead scaled with the other main characteristic length scale,
namely, the de Broglie wavelength.

VI. DISCUSSION

Since the first work of Eddi et al. [19], two physical
phenomena were invoked to explain the “unpredictability” of
walker tunneling, namely, the uncertainty of initial conditions
[21] or the peculiar build up of the wavefield [20]. With
our precise experiments, we showed that the uncertainty in
the initial condition and the noise of the experiment cannot
be held responsible for the “unpredictable tunneling” of the
walkers. Rather, our observations are consistent with chaos.
We observe that trajectories sort out at a short distance be-
fore stepping on the barrier. At this distance an exponential
divergence between nearby trajectories is observed. Also at
this distance, the interaction of the waves with the barrier is
sufficient to influence the drop’s vertical dynamics, alterations
in which are known to be a source of chaos [24].

Walker and quantum tunneling exhibit several similar fea-
tures. Both are unpredictable in the sense that the outcome
cannot be directly deduced from the initial kinetic energy
of the particle. Both are also unpredictable in the position-
velocity cross section of the phase space. The variation of
the tunneling probability with physical parameters observed
in the walking droplets is also a key element of nuclear decay
at atoms as well as of other quantum tunneling processes,
e.g., with ultracold atoms [35]. This similarity suggests that
a classical nonlinear theory may be built to account for tun-
neling similarly as quantum mechanics does. This possibility
has been proposed by Shudo and Ikeda [36] in the context of
semi-classical theory of tunneling (see Ref. [37] for a more
recent overview on this topic).

The repeated measurements done on a tunneling quantum
particle allow one to approximate the particle trajectory to
make comparisons with walkers. These repeated measure-
ments make the quantum particle partially classical. The
statistical analysis of these trajectories shows that the unpre-
dictability vanishes only at a relatively short distance from
the barrier. However, the nature of the theoretical descriptions
of the tunneling in the two systems is markedly different.
For walkers, the unpredictability results from chaos generated
by the subtle coupling between the waves and the particle.
Conversely, tunneling of quantum particles is described by
the wave function and measurements introduce probabilistic
results prescribed by the squared amplitude of the wave
function.

Our study provides further evidence that a classical
particle-wave association may exhibit statistical behavior
reminiscent of a quantum system. Specifically, the walker
system demonstrates that “unpredictable” tunneling is not a
purely quantum oddity since it can be achieved with a classical
system. The origins of the loss of predictive power in the
walker system does not rely on the intrinsic variability of the
experiment but is most likely rooted in the fast time scale
associated with the drop’s vertical dynamics. For a quantum
particle, unpredictability is ensured by the paradigm: The
particle is described entirely by a statistical wave. No fast
timescale is involved in the standard description of a quantum

particle, for which the origins of unpredictability, if any,
remain unknown.
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APPENDIX A: MEASUREMENT ERRORS

The accuracy of impact location determined by pattern
matching is about 1/10 of a pixel (given by the Matlab
least-squares fitting algorithm). We thus obtain an absolute
error on position |	x| = 3 μm, which corresponds to 1% of
the interstep distance b � 4πVw/� associated with the free
walking far from the barrier.

The error on impact time is |	ti| < 0.25 ms (the recording
rate). This represents a measurement uncertainty on the im-
pact phase relative to the Faraday period of |	φ|/2π < 1%.
The uncertainty on the instantaneous speed v is bounded by

|	v|
v

� �|	x|
4πVw

+ |	φ|
2π

< 2% . (A1)

The free walking speed Vw corresponds to an average over
N ∼ 33 successive rebounds, over which the instantaneous
speed v does not fluctuate significantly. Although v has a
measurement error of about 120 μm, the error made on the
free walking speed is considerably smaller, 	Vw = 	v/N �
3 μm/s, which corresponds to a relative error of 0.03%.

APPENDIX B: MAIN SOURCES
OF EXTERNAL VARIABILITY

The “unpredictability” of tunneling may come from some
uncontrolled variations of external parameters. The velocity
of a walking droplet mainly depends on the drop radius R,
the shaking acceleration � and the temperature T through the
Faraday threshold �F (T ). In the present experiment, 	R =
0 since the same droplet was used for all the launches. The
variations of Vw(R, �, �F ) are then given by

	Vw

Vw

�
∣∣∣∣∂Vw

∂�

∣∣∣∣ �

Vw

	�

�
+

∣∣∣∣ ∂Vw

∂�F

∣∣∣∣�F

Vw

	�F

�F
. (B1)

The variation of velocity with shaking acceleration for
the droplet size considered here may be found in the work
of Molaček and Bush [[5], Fig. 5(a)], where V (�/�F ) is
reported:

∂Vw

∂ (�/�F )

∣∣∣∣
�F

= �F

∣∣∣∣∂Vw

∂�

∣∣∣∣
�F

� 73.5 mm/s. (B2)

We thus find |∂Vw/∂�|	�/Vw = 0.26%.
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Some possible variations of the Faraday threshold may be
due to temperature variations of the oil bath. The room tem-
perature near the shaker was recorded throughout the 10 h of
the experiment and was almost constant at 21.5 ± 0.2 ◦C. The
variations of oil density ρ, surface tension γ , and kinematic
viscosity ν follow,

dρ

ρ
= −αdT ,

dγ

γ
= −βdT and

dν

ν
= −εdT , (B3)

with α = 1.07 × 10−3 K−1, β = 6 × 10−5 N m−1 K−1, and
ε = 1.0 × 10−2 K−1. From there, the error on the Fara-
day threshold �F induced by temperature variations of
	T = 0.2 K could be deduced from the expression in Ref.
[[7], Eq. (2.64)],

�F � �2

k0

(
4νk2

0

�

)
− �2

2k0

(
4νk2

0

�

)3/2

, (B4)

with k0 �
(

�2ρ

4γ

)1/3

− g

3

(
2ρ

γ�

)2/3

. (B5)

At the first order the relative variation of the Faraday
threshold is

	�F

�F
� 	ν

ν
+ 	ρ

3ρ
+ 	γ

3γ
, (B6)

which is clearly led by the variation of viscosity with tempera-
ture since ε/α � 1 and ε/β � 1. We thus deduce 	�F /�F <

0.2%. Using again the results of Molaček and Bush [5],

∂Vw

∂ (�/�F )

∣∣∣∣
�

= �2
F

�

∣∣∣∣ ∂Vw

∂�F

∣∣∣∣
�

� 73.5 mm/s , (B7)

we obtain a velocity variation |∂Vw/∂�F |	�F /Vw = 1.0%.
However, the mean room temperature was kept constant
throughout the day by the air conditioning system of the
laboratory. No thermal fluctuation lasting more than 5 min
was observed. Since the bath had a much larger thermal
inertia than the air in the room, we did not expect significant
variations of the Faraday threshold in our experiment.

Another source of error is the use of a powerful LED to
light the experiment. The LED had a power of 100 W and
lit a surface of approximately 0.25 m2 after passing through
a semireflective mirror (50-50). The silicone oil is transparent
to visible light and we assume that the light only warms up the
underlying steel plate. Some light was reflected by the lid and
the free surface of the oil, so the value of Ps = 200 W/m2 is
an upper bound for the power per unit of area that reaches
the plate. If all the light energy were converted into heat,
then the steel plate temperature Tp would increase by 	Tp =
Psτ/ρCpe, where τ is the illumination time, ρ = 7000 kg/m3

is the steel density, and Cp = 470 J/K/kg is the specific heat
capacity of steel and e = 4 mm is the plate thickness. The
illumination time τ was around 30 s ± 3 s which could have
led to a maximum elevation of the plate temperature 	Tp =
0.9 ± 0.09K . The heat diffused through the liquid from the
bottom plate. The thermal diffusivity of silicone oil is D =
9 10−8 m2/s. Assuming that the resulting heat transfer was
diffusive rather than convective, the temperature of the liquid
can be estimated by T (z) − T0 = Tp[1 − exp(−√

Dτ/z)] and
leads to a mean bath temperature over the height of liquid
H = 6.5 mm,

T̄ − T0

Tp
= 1

H

∫ H

0
1 − e

√
Dτ/zdz � 0.1,

since
√

Dτ/H � 0.27. We finally estimate the variation of the
bath temperature between trials as 	T̄ � 0.12Tp(	Tp/Tp +
	τ/τ ) � 0.02K . This estimation is an upper bound of the
bath temperature variation between trials. We thus only expect
variations of velocity in the order of 	Vw/Vw = 0.1%.

We also performed a χ2 test to check the independence of
the output (reflected or transmitted) to the room temperature.
The computed p = 0.16 means that there is 16% chance that
the correlation measured between temperature and tunneling
is due to chance. The statistical power of the test is pwr
=0.55. With the current data set, we cannot conclude that
room temperature has a significant influence on the outcome.
However, we stress that this conclusion may still be mislead-
ing owing to the relatively low statistical power due to the
relatively small number of launches considered.
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