18.357: Lecture 15

Contact angle hysteresis,

The wetting of textured solids

John W. M. Bush

Department of Mathematics MIT

Fluid-Solid Contact: WETTING

Equilibrium contact angle θ_e

Energy differential:
$$dW = dx (\sigma_{SG} - \sigma_{SL}) - dx \sigma \cos\theta_e$$

$$\sigma \cos \theta_e = \sigma_{SL} - \sigma_{SG}$$

Hydrophobic surface

Hydrophilic surface

Total wetting on a flat solid

Partial wetting on a flat solid

Partial wetting

methylnaphtalene

$$\gamma = 20 \text{ mN/m}$$

water

$$\gamma = 73 \text{ mN/m}$$

mercury

$$\gamma = 500 \text{ mN/m}$$

Fluorinated Oil Oil Water Mercury

Fluid-Solid Contact: WETTING

Equilibrium contact angle θ_e

Energy differential:
$$dW = dx (\sigma_{SG} - \sigma_{SL}) - dx \sigma \cos\theta_e$$

$$\sigma \cos \theta_e = \sigma_{SL} - \sigma_{SG}$$

Hydrophobic surface

Hydrophilic surface

The raindrop paradox

Contact angle hysteresis

Static contact angle is not uniquely θ_e

Reality: drop is stable over a range of $\theta_r < \theta < \theta_a$

FORCE of ADHESION resists drop motion

increases with $\Delta \theta = \theta_a - \theta_r$

Origins: advancing contact lines pinned on surface irregularities

The origins of contact angle hysteresis

• motion of contact line past chemical/textural irregularities is energetically costly

Contact angle pinning on corners

Reduce contact angle hysteresis via cleaning

Manifestations of contact angle hysteresis

- liquid slug in a capillary tube
- drops stick to solids

The raindrop paradox

The force of adhesion (Dussan & Chow 1983)

Raindrop stuck on a window

• small drops supported by contact line resistance

$$F_c \sim 2\pi a \ \sigma \ (\cos \theta_r - \cos \theta_a)$$

drops grow by accretion until weight prompts rolling

The triumph of gravity over contact forces

g

 θ_a

Overcoming contact forces via vibration

• force at drop's natural frequency

$$\rho U^2 \approx \sigma / R$$

$$\longrightarrow \omega \sim \left(\frac{\sigma}{\rho R^3}\right)^{1/2}$$

Spontaneous motion in response to a wettability gradient

• lateral chemical force must overcome contact force

Spontaneous motion in response to a chemical gradient

• lateral chemical force must overcome contact force

Propulsion via contact angle hysteresis and vibration

• exploited by a class of shorebirds for feeding

The force of adhesion (Dussan & Chow 1983)

Raindrop stuck on a window

• small drops supported by contact line resistance

$$F_c \sim 2\pi a \ \sigma \ (\cos \theta_r - \cos \theta_a)$$

drops grow by accretion until weight prompts rolling

Water-repellency

- impinging drops roll off rather than adhering
- ullet requires large $\ensuremath{\theta_e}$, small $\Delta heta = \ensuremath{\theta_a} \ensuremath{\theta_r}$

How can we reduce the force of adhesion?

Water repellency in nature

"One who performs his duty without attachment, surrendering the results unto the Supreme Being, is unaffected by sinful action, as the lotus leaf is untouched by water."

• the lotus leaf is superhydrophobic and self-cleaning by virtue of its waxy surface roughness

Contact angle hysteresis

Static contact angle is not uniquely θ_e

Reality: drop is stable over a range of $\theta_r < \theta < \theta_a$

FORCE of ADHESION resists drop motion

increases with $\Delta \theta = \theta_a - \theta_r$

Origins: advancing contact lines pinned on surface irregularities

The force of adhesion (Dussan & Chow 1983)

Raindrop stuck on a window

• small drops supported by contact line resistance

$$F_c \sim 2\pi a \ \sigma \ (\cos \theta_r - \cos \theta_a)$$

drops grow by accretion until weight prompts rolling

Water-repellency

- impinging drops roll off rather than adhering
- ullet requires large $\ensuremath{\theta_e}$, small $\Delta heta = \ensuremath{\theta_a} \ensuremath{\theta_r}$

How can we reduce the force of adhesion?

18.357: Lecture 16

The wetting of textured solids

John W. M. Bush

Department of Mathematics MIT

$$dW = r dx (\sigma_{SG} - \sigma_{SL}) - dx \sigma \cos\theta^*$$

$$\cos\theta^* = r \cos\theta$$

where r is total/planar area

 θ^* INCREASES, but $\Delta\theta$ INCREASES

$$\cos\theta^* = -1 + f_s + f_s \cos\theta$$

where f_s is exposed/planar area

 $heta^*$ increases $\Delta heta$ decreases

$$dW = r dx (\sigma_{SG} - \sigma_{SL}) - dx \sigma \cos\theta^*$$

$$\cos\theta^* = r \cos\theta$$

where r is total/planar area

 θ^* INCREASES, but $\Delta\theta$ INCREASES

$$\cos\theta^* = -1 + f_s + f_s \cos\theta$$

where f_s is exposed/planar area

 $heta^*$ increases $\Delta heta$ decreases

where r is total/planar area

 θ^* INCREASES, but $\Delta\theta$ INCREASES

where f_s is exposed/planar area

 $heta^*$ INCREASES $\Delta heta$ DECREASES

Water-repellency: requires the maintenance of a Cassie state

Biomimetic water-repellent surfaces: viable with new microfab techniques

Lau et al. (2003)

Bico et al. (1999)

Greiner et al. (2007)

Cao et al. (2007)

Superhydrophobic surfaces achieved with fractal texturing

Shibuichi et al. (1996), Onda et al. (1997), Herminghaus (2000)

"The Lichao surface"

$$\theta = \theta_A = \theta_R = 180^{\circ}$$

$$dW = r dx (\sigma_{SG} - \sigma_{SL}) - dx \sigma \cos\theta^*$$

$$\cos\theta^* = r \cos\theta$$

where r is total/planar area

 θ^* INCREASES, but $\Delta\theta$ INCREASES

$$\cos\theta * = -1 + f_s + f_s \cos\theta$$

where f_s is exposed/planar area

 θ^* INCREASES

 $\Delta \theta$ DECREASES

Water-repellency: requires the maintenance of a Cassie state

Bartolo et al. (2006) Reyssat et al. (2007)

Surface texturing and directional adhesion Yoshimitsu et al. (2002)

- drops move most easily along nanogrooves
- greatest resistance to motion perpendicular to grooves
- texturing introduces anisotropy in contact line resistance

Unidirectional adhesion

on the butterfly wing

Zheng et al. (2007)

Unidirectional adhesion

Zheng et al. (2007)

Plants are bumpy: isotropic roughness provides water-repellency

Water-walking bugs are hairy

- roughness provides waterrepellency
- driving leg exhibits unidirectional adhesion
- anisotropic roughness facilitates propulsion

(Prakash & Bush 2011)

- permits drop motion in only one direction
- applications in directional draining, microfluidics

Vibration-induced motion on a directional surface

The ant raft: a self-assembling superhydrophobic surface

Mlot et al. (2011)