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Abstract. We revisit de Broglie’s double-solution pilot-wave theory in light of insights gained from the hy-
drodynamic pilot-wave system discovered by Couder and Fort [1]. de Broglie proposed that quantum parti-
cles are characterized by an internal oscillation at the Compton frequency, at which rest mass energy is ex-
changed with field energy. He further proposed that the resulting pilot-wave field satisfies the Klein–Gordon
equation. While he developed a guidance equation for the particle, he did not specify how the particle gener-
ates the wave. Informed by the hydrodynamic pilot-wave system, we explore a variant of de Broglie’s mechan-
ics in which the form of the Compton-scale dynamic interaction between particle and pilot wave is specified.
The particle is modeled as a localized periodic disturbance of the Klein–Gordon field at twice the Comp-
ton frequency. We simulate the evolution of the particle position by assuming that the particle is propelled
by the local gradient of its pilot wave field. Resonance is achieved between the particle and its pilot wave,
leading to self-excited motion of the particle. The particle locks into quasi-steady motion characterized by a
mean momentum p̄ =ħk, where k is the wavenumber of the surrounding matter waves. Speed modulations
along the particle path arise with the de Broglie wavelength and frequency ck. The emergent dynamics is
strongly reminiscent of that arising in the hydrodynamic pilot-wave system, on the basis of which we antici-
pate the emergence of quantum statistics in various settings. Our results suggest the potential value of a new
hydrodynamically-inspired pilot-wave theory for the motion of quantum particles.

Keywords. Klein–Gordon equation, Matter waves, Hydrodynamic quantum analogs, Pilot-wave theory, Free
particle.

1. Introduction

“We believe that the debate on hidden variables is not closed.”
– Yves Couder, DTU Fluids Summer School, Krogerup Denmark, August 12, 2011.
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The de Broglie relation, p = ħk, relates the momentum of a microscopic quantum particle p
to an associated wavenumber k through the reduced Planck’s constant ħ. The relation serves
as a cornerstone of quantum mechanics; moreover, it remains the totality of the dynamical
description of the free particle in the standard quantum formalism [2], where the notion of
particle trajectories has been largely abandoned. Nevertheless, the physical origins of the de
Broglie relation remain nebulous: it survives as a vestigial element of de Broglie’s discarded
physical picture of quantum dynamics [3, 4]. We here demonstrate the manner in which p = ħk
emerges naturally from a trajectory-based physical picture of the free quantum particle. On the
basis of the physical analogy between our model system and pilot-wave hydrodynamics, our
results further suggest a dynamical basis for the emergence of a statistical signature with the
de Broglie wavelength, specifically, the dynamic constraint imposed on the particle by its quasi-
monochromatic pilot-wave field. As it is rooted in de Broglie’s original double-solution pilot-
wave theory of quantum dynamics [3–5] but informed by the hydrodynamic pilot-wave system
discovered by Couder and Fort [1], we refer to our fledgling theoretical model as “hydrodynamic
quantum field theory”.

1.1. Hydrodynamic pilot-wave theory

In 2005, Couder and Fort discovered a hydrodynamic pilot-wave system consisting of a millimet-
ric oil droplet self-propelling across a vibrating bath of the same liquid [1, 6]. The system has ex-
tended the range of classical physics to include many features previously thought to be exclu-
sively quantum [7–9]. Hydrodynamic quantum analogs achieved with this system now include
tunneling [10–12], Landau levels [13, 14], Zeeman splitting [15], and Friedel oscillations [16, 17].
Quantized orbits arise for droplets walking in either a rotating frame [13, 14, 18] or a simple
harmonic potential [19–21]. In the chaotic regime of these orbital pilot-wave systems, the drop
switches intermittently between weakly unstable quantized orbits, giving rise to quantum-like
statistics [14, 18–21]. When the droplet walks in a confined cavity, quantum-like statistics also
emerge [22], along with effects similar to quantum superposition and the quantum mirage [23].
Other analogs have been more elusive, including diffraction from single and double slits [24], as
has been contested by Bohr and coworkers [25, 26] but revisited by Pucci et al. [27], who con-
firmed a wave-like diffraction pattern in addition to the influence of the second slit on a particle
passing through the first, a form of single-particle interference.

The walking-droplet system suggests a more general theoretical framework for exploring
classical pilot-wave dynamics not accessible in the laboratory [7]. Doing so has led to the
discovery of hydrodynamic spin states [28, 29], and rich two-particle dynamics [30]. Durey et
al. [31] examined the stability of the self-propelling state in this general classical pilot-wave
framework, showing the propensity for in-line oscillations and emergent statistical behavior with
a wavelength corresponding to that of the pilot wave [17]. More adventurous still was Fort and
Couder’s [32] theoretical abstraction of inertial walkers, which exhibited an analog of the Bohr–
Sommerfeld quantization rule.

The hydrodynamic quantum field theory introduced here represents an attempt to develop
a theoretical model of quantum dynamics based on insights gained from the walking-droplet
system. As such, it has a number of recent precursors. Andersen et al. [25] examined a dynamical
system in which a particle locally excites a waveform satisfying Schrödinger’s equation, then
moves in response to gradients of that field. While orbital quantization consistent with the Bohr–
Sommerfeld quantization rule was shown to emerge, they concluded that their model was not
capable of giving rise to behavior analogous to the quantum double-slit experiment. Borghesi [33]
proposed an elastic pilot-wave model wherein a point-particle is allowed to move within a non-
dissipative elastic substrate. Shinbrot [34] examined the influence of periodic driving of the
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Klein–Gordon equation, and found bound-state solutions with half-integer spin composed of
spin-less particles. A number of investigators have taken inspiration from the walking droplets to
inform and advance their theoretical modeling of quantum stochastic dynamics [35–38].

The hydrodynamic pilot-wave system discovered by Couder and Fort is the first realization of a
macroscopic particle self-propelling through a resonant interaction with its self-generated quasi-
monochromatic wave field. As such, it is markedly different from Bohmian mechanics [39, 40],
closer in spirit to the original double-solution pilot-wave theory proposed in the 1920s by
Louis de Broglie [7, 8]. de Broglie envisaged quantum particles as having an internal clock that
interacts with a background field, exchanging rest mass energy and field energy at the Compton
frequency [3–5]. While he developed a guidance equation that prescribes how the particle moves
in response to the local wave, he did not specify the mechanism for wave generation [41].
In the hydrodynamic system, the droplet’s bouncing plays the role of the particle’s internal
vibration in de Broglie’s mechanics, the bath surface the role of the field, and the mechanism
of wave generation is well understood [7, 8]. We shall explore here a dynamical system of the
form originally proposed by Louis de Broglie, but informed by the walking-droplet system. The
novel feature of our model is that we treat explicitly the production of the pilot wave by particle
vibration at twice the Compton frequency.

A vertically vibrating bath becomes unstable at a critical vibrational acceleration known as
the Faraday threshold, above which a standing field of subharmonic Faraday waves arises, with
a wavelength prescribed by the standard water-wave dispersion relation [42]. In the parameter
regime of interest in the hydrodynamic pilot-wave system, the characteristic wavelength of the
Faraday waves is approximately 5 mm. The waves are dominated by surface tension rather than
gravity. Thus, roughly speaking, the role of ħ in de Broglie’s mechanics, as determines both the
particle’s natural frequency and wave energy, is played by surface tension in the hydrodynamic
system [7]. Notably, the walking-droplet experiments are performed below the Faraday threshold:
no waves would be present in the absence of the drop, which thus responds only to its own field.
Nevertheless, the bath vibration is critical in predisposing the system to quasi-monochromatic
waves with the Faraday wavelength [43], as arise when the droplet bounces at the Faraday
frequency so that resonance is achieved between droplet and bath.

Following the original theoretical model of Couder and Fort [24], a hierarchy of models of
increasing sophistication have been developed to describe the walking droplets (see [44] for a
recent review). We here follow Molácek and Bush’s [45, 46] theoretical description of the vertical
and horizontal dynamics of droplets walking on the surface of a vibrating bath in resonance with
their guiding wave. Time-averaging over the bouncing period eliminates the vertical dynamics
from consideration, and provides a description of the horizontal motion revealed by strobing
the droplet at the Faraday frequency. In this strobed frame, the drop appears to glide along a
line of constant wave amplitude, dressed by a wave form that is stationary in the drop’s frame
of Refs [47, 48]. The stroboscopic model of Oza et al. [49] is based on the assumption that the
vertical motion is fast relative to the horizontal, so the drop may be treated as a continuous
source of waves along its path. The resulting trajectory equation describing the drop’s horizontal
displacement xp takes the form

mẍp =−D ẋp −mg∇h(xp, t ). (1)

The drop is propelled by a wave force proportional to the slope of the local wave field h(x, t ),
and resisted by a linear drag induced during flight and impact, characterized by a constant drag
coefficient D . The wave field is that produced by prior bounces, and may be expressed as an
integral along the droplet path of the form

h(x, t ) = A
∫ t

−∞
J0(kF |x−xp(s)|)e−(t−s)/(TF Me ) ds, (2)
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where TF is the Faraday period, kF is the Faraday wave number, A is a constant that depends on
the drop’s impact phase, and J0 is the Bessel function of the first kind. The memory parameter

Me = Td

TF (1−γ/γF )
, (3)

depends on the decay time of the waves in the absence of vibrational forcing Td , as well as the
proximity of the vibrational acceleration γ to the Faraday threshold, γF [50]. Notably, Me pre-
scribes the rate of decay of the wave field, and increases as the Faraday threshold is approached.
The quantum-like features of the hydrodynamic pilot-wave system emerge in the high-memory
(large Me ) limit.

The richness of the hydrodynamic pilot-wave system arises due to the temporal nonlocality
of the wave force, whose form renders the drop dynamics hereditary: predicting the drop motion
requires knowledge of its past [9, 13, 50]. It is also worth noting that the walker motion may be
described in terms of three distinct speeds, the phase and group speeds of its piloting Faraday
wave field, and the walker speed. For the special case of free, steady motion, the self-propelling
particle is dressed by a stationary wave form: when strobed at the Faraday frequency, this wave
form is unchanging (see Figure 1(a–c) and [47, 48]).

A key component in the dynamics of the walking droplets is resonance between the walker’s
bouncing motion and its wave field. Owing to the bath vibration, the result of this resonance
is a highly structured, quasi-monochromatic wave field that imposes a dynamic constraint on
the bouncing droplet. The quasi-monochromatic wave field is critical for the three established
paradigms for the emergence of quantum-like statistics from pilot-wave hydrodynamics. The
first such paradigm has emerged from studies of orbital pilot-wave dynamics, where the droplet
carves out a wave field that promotes motion along a finite number of quantized periodic
orbital states of relatively simple geometric form [13, 14, 18–20, 51]. When the system becomes
chaotic, the droplet switches intermittently between these weakly unstable periodic orbits, giving
rise to a multimodal statistical signature whose precise form reflects the relative instability of
the unstable quantized orbits [14, 19, 21]. In the second paradigm, the droplet speed oscillates
with the wavelength of its pilot wave [52, 53], leading to a statistical signature with this same
wavelength [16,17]. This mechanism is most clearly demonstrated when a walker interacts with a
submerged well: the drop is first drawn inwards at uniform speed along a spiral, then exits the well
radially with speed oscillations induced by its interaction with the well [17]. The result of these
speed oscillations on an ensemble of trajectories is a statistical signature reminiscent of Friedel
oscillations [54, 55], with the Faraday wavelength in place of the de Broglie wavelength [16, 17].
The third paradigm arises from the droplet interacting with its pilot-wave field in such a way as
to execute a random walk with a characteristic step length comparable to λF , mean speed U and
resulting diffusivity UλF [51,56–58]. We shall see here that both in-line oscillations and structured
random walks of the free particle are also a feature of the variant of de Broglie’s mechanics
developed here.

1.2. de Broglie’s matter waves

de Broglie’s pilot-wave theory was an attempt to reconcile quantum mechanics and relativ-
ity [3–5]. de Broglie suggested that a particle at rest has an associated internal clock with the
Compton frequencyωc = m0c2/ħ, as defined by the de Broglie–Einstein relation, E = m0c2 =ħωc ,
where m0 is the particle rest mass and c is the speed of light. He proposed that this clock generates
a standing wave through the exchange between rest-mass energy and wave energy. Schrödinger
proposed that the particle vibration, or so-called Zitterbewegung, takes place at twice the Comp-
ton frequency [59–61]. Notably, such fast oscillations are not yet observable experimentally for
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Figure 1. Comparison of the pilot wave fields in the walking droplet system (a–c) and our
HQFT (d–f). Simulated wave profiles along the direction of motion of the walker [49] for
memories (a) Me = 6.27 and (b) 31.33. Wave amplitudes are shown in µm. (c) Snapshot of
the strobed motion of a walking droplet reveals its quasi-steady pilot-wave field translating
uniformly with the drop [47, 48]. (d–h) The predicted pilot wave fields for particles moving
at different constant speeds, v = βc, with β varying from 0.1 to 0.7. The corresponding de
Broglie wavelength λB =λc /(βγ) is shown for reference. (i) Strobing the motion atβ= 0.7 at
the Compton frequency reveals three successive, indistinguishable waveforms separated by
the time interval τc = 2π/ωc . In both the hydrodynamic and quantum systems, the particle
moves along a point of constant amplitude of its strobed pilot-wave field.

most particles with current experimental capabilities; for example, the circular Zitter frequency
of the electron is 1.6×1021 s−1. Nevertheless, some evidence of the Zitterbewegung has recently
been reported in Bose–Einstein condensates [62] and trapped ion systems [63].

According to de Broglie’s original double-solution pilot-wave theory [5], there are two distinct
waves, the statistical wave of standard quantum mechanics and a real particle-centered pilot
wave responsible for guiding the particle. A feature of de Broglie’s theory that he stressed is
the “harmony of phases” that ensures the resonance between the particle’s vibration and its
pilot wave in an arbitrary frame of reference. Let ω be the particle oscillation frequency in a
stationary frame of reference. When set into motion at speed v , due to the relativistic Doppler
shift, this frequency is reduced toω/γ, where γ= 1/

p
1− v2/c2 is the Lorentz factor [61]. However,

a concurrent increase of the particle frequency mc2/ħ arises due to the relativistically boosted
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mass, m = γm0, thus cancelling the frequency reduction. The particle vibration thus maintains
resonance with its pilot wave in any frame of reference, a resonance described by de Broglie as
“une grande loi de la Nature” [3].

In the original derivation of his particle guidance equation, de Broglie assumed a monochro-
matic pilot wave characterized by a single wave number k [3]. For the sake of simplicity, we here
consider a one-dimensional setting, for which the phaseΦ of such a wave may be expressed as

Φ= kx −ωt . (4)

The assumption underlying the harmony of phases is that the phase is a scalar and hence
invariant to Lorentz transformation. As such, the phase measured from any inertial frame of
reference is equal to that viewed from the particle’s frame of reference:

ω

γ

x

v
= γω

(
x

v
− x

vφ

)
, (5)

from which it follows that the phase velocity of the pilot wave is vφ = c2/v . Next, taking the spatial
derivative of the pilot-wave phase and substituting for the phase velocity vφ =ω/k and frequency
ω= γωc , we deduce

∂Φ

∂x
= k = ω

vφ
= ωv

c2 = γm0v

ħ , (6)

from which follows the de Broglie relation:

p = γm0v =ħk. (7)

This relation serves to define the de Broglie wavelength λB = 2π/k in terms of the particle
momentum. The generalization to three dimensions is straightforward and yields p = γm0v =
ħ∇Φ=ħk.

Subsequently, de Broglie proposed that the pilot wave evolves according to the Klein–Gordon
equation [5, 64], and so deduced an alternative derivation of his guidance equation. Assume a
quasi-monochromatic one-dimensional wave solution,φ(x, t ) = A(x, t )eiΦ(x,t ), whereΦ= kx−ωt
and A is a real amplitude that varies over a lengthscale large relative to 2π/k. By substituting into
the Klein–Gordon equation,

φt t − c2φxx +ω2
cφ= 0, (8)

one finds that the imaginary part of the equation takes the form:

Φt At − c2Φx Ax = 0, (9)

where subscripts denote partial derivatives with respect to x and t . If the particle moves along a
point of constant amplitude A(x, t ) of its pilot wave field, then the Lagrangian derivative of this
amplitude in the particle’s frame of reference must vanish:

D A

Dt
= At + v Ax = 0, (10)

yielding the particle speed v = −At /Ax . Substitution from (10) then yields a relationship known
as de Broglie’s guidance equation:

v =−c2Φx

Φt
. (11)

Substituting for Φx = k and Φt =−ω yields v = c2k/ω. Eliminating ω using the expression for the
relativistic energy of a particle E = ħω = γm0c2 yields (7) directly. Notably, this derivation of the
de Broglie relation follows from the assumption that the particle moves along lines of constant
wave amplitude, as is the case in pilot-wave hydrodynamics (see Figure 1a–c).

The form of the pilot-wave field φ was not clearly defined by de Broglie, and his inability to
do so was the principal impediment to advancing his theory. Notably, both derivations of the
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de Broglie relation (7) reviewed above rely on the assumption of a monochromatic or quasi-
monochromatic wave (4). Following the work of Bohm [39,40], de Broglie suggested that the pilot
wave takes the form of the solution of Schrödinger’s equation, with the only distinction between
these two waves being that the pilot wave has a singularity in the vicinity of the particle. Unsure
of the form of the pilot wave, de Broglie invested considerable effort in demonstrating that his
guidance equation (11) has broader generality [65], including when the pilot wave has a quasi-
monochromatic form.

De Broglie’s uncertainty in the form of the pilot wave was rooted in his inability to specify
the coupling between particle and wave. To be precise, while his theory indicates how the
particle moves in response to its pilot wave, it does not specify the manner in which this wave
is generated by the particle. This shortcoming of de Broglie’s theory (and likewise, incidentally,
of Bohmian mechanics [39, 40]) was pointed out explicitly by Holland [41]: “. . . we can envisage
a more active role for the particle, something which is not even admitted as conceivable in the
conventional view. This may, for instance, enter as a ‘source’ of the Ψ (pilot-wave) field through
an inhomogeneous term in the wave equation . . . ” It is precisely this approach that we take in
developing our hydrodynamic quantum field theory, where the mechanism for wave production
has been suggested by the walking droplet system.

In Section 2, we describe our mathematical model, an extension of de Broglie’s mechanics
infused with intuition gained from the walking-droplet system. The model captures the essen-
tial features common to the hydrodynamic system and de Broglie’s mechanics, including the
resonance between the particle and its quasi-monochromatic guiding wave, but goes beyond
de Broglie’s theory in specifying the mechanism of wave generation. In Section 3, we present
model simulations of, in turn, particle kinematics (Section 3.1) and dynamics (Section 3.2). The
latter illustrates the natural emergence of a mean motion consistent with p = ħk, and in-line
speed oscillations with the de Broglie wavelength. The implications of our results are discussed in
Section 4.

2. Mathematical model

We proceed by extending de Broglie’s double-solution pilot-wave program through inclusion of
a mechanism for particle-induced wave generation. We model relativistic particles as localized
disturbances in a scalar field φ that evolves according to the Klein–Gordon wave equation.
Traditionally, this equation describes the evolution of the wave function of spin-0 particles, from
which particle statistics is derived. Notably, it also describes the evolution of the Higgs field [66].
Here, we consider the Klein–Gordon equation to describe the real pilot wave generated through
a local interaction with the vibrating particle. Using this conceptual framework, we examine the
self-propulsion of a microscopic particle by its pilot-wave field.

We consider the forced Klein–Gordon equation in one dimension,

φt t − c2φxx +ω2
cφ=−εp f (t )δa(x −xp ), (12)

whereφ is the real, scalar pilot-wave field. We seek solutions of this equation forced by a localized
vibration: f (t ) = sin(2ωc t ), εp is a constant and δa(x) = (1/|a|pπ)e−(x/a)2

is a modified delta
function that serves to localize the driving oscillation to the vicinity of the particle location xp .
The parameter a defines the width of the modified delta function, and so the extent of the
particle’s influence on the wave-field. In our analysis, we set a = (1/2)λc so that the particle
influence arises on the scale of the Compton wavelength. Notably, the form chosen for δa is
consistent with de Broglie’s postulate of a localized disturbance creating a wave form that extends
to infinity while decaying spatially [3]. Our mechanism for wave generation is similar in spirit to
that in the hydrodynamic pilot-wave model of Milewski et al. [43], wherein the droplet is treated
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as a localized exciter of its pilot-wave field. The resulting wave form can then not be simply
expressed in a simple form equivalent to (2); rather, it is solved for directly from the governing
partial differential equation. While the hereditary nature of the system is thus less evident in the
mathematical formulation, the critical feature of path-memory is present in both models.

Here, informed by the hydrodynamic system, we couple the wave equation (12) to a guidance
equation in which the particle velocity is proportional to the gradient of the wave amplitude

γẋp =−α∂φ
∂x

, (13)

in a stationary frame. The wave amplitude coefficient α serves as the only free parameter in our
system. We note that (13) resembles the guidance equation (1) in pilot-wave hydrodynamics in
the limit of negligible drop inertia: the particle simply moves in response to gradients of its pilot-
wave field. In what follows, we shall see that it yields the salient result of de Broglie’s physical
picture, specifically p =ħk.

Relativistic considerations are worth noting. For relativistic particles, the numerical scheme
employed here includes a proper Lorentz contraction for an observer that is not moving with the
particle. The wave field φ is a scalar function, necessarily invariant to Lorentz transformation.
Conversely, the spatial derivative appearing in the trajectory equation (13) is not invariant to
Lorentz transformation due to the contraction of length and dilation of time in a moving frame of
reference. The numerical implementation is thus carried out as follows. First, the wave equation
is solved in the stationary frame of reference. After each time-step, the wave gradient at the
particle location is updated and translated to the particle frame of Ref. [67]. In this particle frame,
we use (13) to update the added speed due to the change in the wave gradient over one time-step.
Subsequently, we use the Lorentz transformation to update the added speed in the stationary
frame according to:

ẋ ′
p =

dx ′
p

dt ′
= dxp − v dt

dt − v dxp

c2

. (14)

In the non-relativistic limit, γ→ 1, this procedure for updating the particle speed is not necessary
and (13) can be computed directly. As noted in Section 1.2, the phase of oscillation is the same
in any frame of reference due to the harmony of phases. The particle oscillations and coupled
particle-wave system are thus consistent with relativity [67].

The coupled Klein–Gordon equation (12) and guidance equation (13) are discretized using
finite differences. An explicit finite-difference method was derived to solve the Klein–Gordon
wave equation, and a Runge–Kutta scheme is employed to advance in time the guidance equation
(13), which is nonlinear due to the dependence of γ on the particle speed [68].

The numerical scheme is second-order accurate in space and first-order in time. A time step
of ∆t = 10−3τc , where τc = 2π/ωc , and a constant grid cell size of ∆x = 2×10−3λc were used to
resolve the smallest time and length scales of the system. The simulation domain varied from
200 to 600 Compton wavelengths, according to the case solved. Zero-wave-amplitude boundary
conditions were applied, effectively imposing infinite-wall potentials at the boundaries of the
computational domain. However, boundaries were sufficiently distant that they did not affect
the simulated particle dynamics. A maximum integration time of 1.2×104τc was used to collect
statistics, corresponding to approximately 106 time steps.

Finally, we note that our model has a single free parameter, the coupling constantα appearing
in the guidance equation (13), as relates the particle velocity to the gradient of the pilot-wave
field. Choosing a different α changes both the mean particle momentum p and the wavenumber
k; however, these always change in concert such that p = ħk. Choosing the coupling constant α
in our model is thus analogous to choosing the particle energy in quantum mechanics.
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Figure 2. Pilot-wave kinematics. The pilot waves generated by (a,b) stationary and (c,d)
steadily translating particles. (a) Spatio-temporal map indicates the evolution of the nor-
malized wave form, φ (color map), generated by a stationary particle (indicated in black).
(b) The normalized wave field in (a) at a time t/τc = 10. Far from the particle location,
the wave form has a characteristic wavelength λc . (c) Spatio-temporal map indicates the
wave form, φ (color map), generated by a particle in uniform motion at speed v = 0.7c. The
slope of the (dashed pink) line of constant phase indicates a phase speed c2/v . The light
cone is indicated by the dashed black line. Indicated in yellow is the speed calculated from
the measured wavelength λ = 2π/k according to v = ħk/(γm0), from which we infer that
λ=λB in the vicinity of the particle. (d) Normalized wave field of the particle in (c) at a time
t = 10τc indicates the limited upstream extent of the pilot wave. The de Broglie wavelegnth
λB =λc /(γβ) = 1.02λc is shown for reference.

3. Results and discussion

The results of our theoretical model are presented as follows. In Section 3.1, we explore the
effect of particle vibration and translation on the pilot-wave field using kinematic simulations;
specifically, we prescribe a constant particle speed, so the trajectory equation (13) need not be
solved. This constraint is relaxed in Section 3.2, where we investigate the fully dynamic coupling
between the particle and its pilot-wave expressed in (12) and (13), as results in the particle’s self-
propulsion.

3.1. Kinematics: the pilot wave form

In Figure 2, we present the wave forms generated by both stationary and uniformly translating
particles. For the particle at rest (Figure 2a), after an initial transient, a standing wave form with
a characteristic wavelength λc emerges. Figure 2(b) shows a snapshot of the transient wave form
ten Compton periods after the initiation of particle vibration. Figure 2(c) shows the relatively
complex wave structure that emerges when the particle is set into motion at a constant speed
of v = 0.7c. The form of the accompanying wave form ten Compton periods after the initiation
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Figure 3. Pilot-wave kinematics. Spatio-temporal map indicates the evolution of the nor-
malized wave field, φ (color map), generated by a particle (indicated in black) moving at a
uniform speed v = 0.7c. (a) In the full, unstrobed solution, the phase speed is comparable
to de Broglie’s superluminal phase speed, c2/v . (b) Strobed solution, presented at integer
multiples of the Compton period τc = 2π/ωc . Note that de Broglie’s phase speed, c2/v , is
not apparent in the strobed framework. The light cone is indicated by the dashed black line
with slope c.

of particle motion in shown in Figure 2(d). The dependence of the form of the pilot wave form
on β= v/c is shown in Figure 1(d–h), where the de Broglie wavelength λB = λc /(γβ) is indicated
for reference. Notably, signatures of both the de Broglie and Compton wavelengths are evident
in all cases. As β→ 1, the pilot wave has only a weak signature in advance of the particle, and
necessarily resides within the particle’s light cone.

We proceed by measuring the wavelength of the waves in the vicinity of the translating particle
towards the end of the simulation shown in Figure 2(c). If we identify this wavelength with the de
Broglie wavelength,λB , then the corresponding speed vp =ħkB /γm0 is shown as a dashed yellow
line, and is virtually indistinguishable from the prescribed particle speed indicated in black. Note
that the phase velocity of these waves is comparable but not precisely equal to de Broglie’s phase
velocity, c2/v . When the waves in the vicinity of the particle are strobed at ωc , the constant
speed motion is apparent through the wave field (Figure 3). We conclude that these pilot waves,
generated by the particle vibrating at 2ωc and translating at uniform speed, have wavelength λB

as measured in a stationary frame, and so are consistent with the proposed form of de Broglie’s
matter waves. The form of the waves in this kinematic case has recently been deduced analytically
by Durey & Bush [69], who solved the appropriate initial-value problem.

3.2. Dynamics: self-propulsion and in-line oscillations of free particles

We proceed by simulating a particle free to move through interaction with its pilot-wave field,
as described by the coupled equations (12) and (13), with coupling constant α = 0.045. We
consider a closed computational domain that extends between x = −600λc and x = 600λc . A
zero-wave-amplitude condition is applied at the boundaries. Our focus is on the initial trajectory
of particles, and we investigate only the range x = −20λc to x = 20λc , in which the boundaries
have a negligible influence. The resulting pilot-wave dynamics are shown in Figure 4.

The particle vibrates at twice the Compton frequency, exciting localized waves similar to the
standing waves shown in Figure 2(a,b). In order to break symmetry and so initiate motion, a small
initial random wave perturbation is applied, approximately four orders of magnitude smaller
than the maximum wave amplitude generated by the particle. This perturbation initially causes
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Figure 4. Pilot-wave dynamics of a free particle. (a) Spatio-temporal map illustrates the
evolution of the normalized pilot-wave field, φ (color map), generated by the trajectory
of a free particle (indicated in black). The coupling constant in (12), α = 0.045. Dashed
black lines correspond to p̄ = ħk, as calculated from the wavelength in window (c), where
the particle has a quasi-steady speed of approximately 0.25c. The particle’s light cone is
indicated by the dotted black line with slope c. Closeup views of (b) the initial quasi-static
state and (c) the subsequent quasi-steady, self-propelling state.

the particle to oscillate about its initial position (x = 0) with small amplitude, on a scale not
perceptible in Figure 4. As time proceeds, the particle vibration causes the local wave amplitude
to increase. At t ≈ 20τc , symmetry is broken and the particle is deflected, in this case, to the right.
The subsequent motion is highly sensitive to the initial perturbation. Thereafter, the particle locks
into a quasi-steady motion, in this case, propelling itself to the left. Measuring the wavelength
in the vicinity of the particle as we did for the kinematic case, we find that the emergent mean
motion is again consistent with p̄ = ħk (dashed black lines). Moreover, a fine-scale particle
dynamics is now apparent: the particle speed is modulated by an oscillation about the mean,
with the de Broglie wavelength.

By strobing the free particle solution at ωc , as we did in the kinematic case (Figure 3), we
reveal that the particle trajectory may be traced through the propagation of its accompanying
pilot-wave packet, despite the fact that its trajectory is relatively complex (Figure 5). Thus,
as in the walker system, the microscopic particle is “dressed” with an accompanying quasi-
monochromatic wave form that is effectively stationary in the particle frame of reference. The
range of influence of the particle is thus extended through its pilot-wave field, a feature that is
key to the emergent quantum-like behavior in several hydrodynamic quantum analogs [7, 9].

Figure 6 illustrates 50 particle trajectories, each corresponding to a separate simulation of
the same configuration, but with a different random initial wave perturbation. Each trajectory
is initiated from the same location (x = 0), but then deflected in a random manner by the initial
perturbation. The particle trajectories all reach a quasi-steady state in which they oscillate about
a constant mean speed such that p̄ = ħk. Most particles undergo sporadic changes in direction
and then settle into a new quasi-steady motion.

The power spectral density of the time series describing the speed evolution of a particle
moving with mean speed v = 0.32c (α = 0.05) is shown in Figure 7. The spectrum reveals three
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Figure 5. Spatio-temporal wave-field map of the free particle (indicated in black) showing:
(a) the full unstrobed solution, and (b) the strobed wave solution, presented at integer
multiples of the Compton period τc = 2π/ωc . The conditions are the same as in Figure 4.

Figure 6. Symmetry breaking and the emergence of self-propulsion in an ensemble of 50
free-particle trajectories. The coupling constant α= 0.045. An initial random perturbation,
four orders of magnitude smaller than the maximum value of the wave-field, was applied
to the wave-field in order to break symmetry and so initiate motion. The emergent self-
propelling states are marked by a mean speed v̄ = ħk/(γm0) = 0.25c, in-line oscillations
with frequency ωmod = kc and sporadic reversals in direction.

significant frequencies, the first being the particle’s vibration frequency ω = 2ωc . The second

and third frequencies, ω =
√

(ω2
c ±k2c2), can be understood as being shifted from the Compton

frequency, ωc , due to the particle’s self-excited in-line oscillations at the modulation frequency
ωmod = kc (see also Figure 4c). By way of comparison, in the hydrodynamic pilot-wave system,
the resonant walker bounces at the Faraday frequency, indicating a harmonic resonance between
droplet and wave, and the in-line oscillations arise at a frequency of order u0kF , where u0 is the
free walking speed [31].
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Figure 7. Temporal power spectral density of the velocity fluctuations of a free particle
with mean speed v̄ = 0.32c, as computed over a time interval of 250 Compton periods. The
coupling constantα= 0.05. Note the prominence of the particle forcing frequency, 2ωc , and

the two dominant frequencies atω=
√

(ω2
c ±k2c2), as arise due to the in-line oscillations at

the frequency kc.

Figure 8. Spatial power spectral density of velocity fluctuations of a free particle with mean
speed v̄ = 0.32c. The coupling constant α= 0.05. The dashed line represents the de Broglie
wavenumber, k = γm0v̄/ħ. Inset: the deviations of the particle speed about the mean. The
de Broglie wavelength λB =λc /(βγ) = 2.96λc is shown for reference.

The speed modulations of a free particle with mean speed v̄ = 0.32c are also characterized
in Figure 8. A clear peak is apparent at the de Broglie wave number in the spatial power spec-
trum of these modulations. The in-line speed oscillations with the de Broglie wavelength are
clearly apparent in the spatial dependence of the particle speed (inset of Figure 8). We con-
clude that the pilot-wave dynamics are characterized by in-line speed oscillations with the de
Broglie wavelength and frequency ck. Our results thus suggest a dynamical interpretation of the
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Table 1. Comparison of the hydrodynamic pilot-wave system and the current model

Pilot-wave hydrodynamics HQFT
Driving Bath vibration Zitterbewegung
Driving frequency 2 ωF 2 ωc

Particle vibration Droplet bouncing Zitterbewegung
Waves Faraday waves Matter waves

Wave natural frequency ωF ωc = m0c2

ħ
Pilot wavelength λF λB , λc

Dispersion relation ω2
F = g kF + σ

ρ
k3

F ω2 =ω2
c + c2k2

Wave energetics Drop GPE ←→ Surface energy m0c2 ←→ħω
Wave energy parameter σ ħ
Mean velocity Free walking speed: u0 v̄ =ħk/(γm0)
Particle vibration length Step size: u0/ωF λc = h/mc
In-line oscillation frequency u0kF ωmod = ck
In-line oscillation length λF λB

relativistic quantum dispersion relation, ω2 = ω2
c + c2k2 [70]: the first term corresponds to the

energy of internal vibration and wave generation, the second to the kinetic energy associated
with in-line oscillations. Recall that in-line oscillations and structured random walks with the pi-
lot wavelength are also prevalent in the hydrodynamic pilot-wave system [52, 53, 58], and have
been shown to be responsible for the emergence of quantum-like statistics in a number of set-
tings [16, 17, 22, 23, 51, 56, 57].

4. Conclusions

The similarities between the walker system and our extension of de Broglie’s double-solution
pilot-wave theory are summarized in Table 1. Matter waves play the role of capillary Faraday
waves in the walker system. The Zitterbewegung of the quantum particle at twice the Compton
frequency plays the role of the droplet bouncing at the Faraday frequency in generating the struc-
tured quasi-monochromatic pilot-wave field through a resonant interaction. Planck’s constant ħ
plays the role of surface tension in setting both the natural frequency of the quantum particle and
its associated wave energy [7]. In both systems, a localized vibrating particle gives rise to the exci-
tation of a quasi-monochromatic wave field centered on the particle, and resonance is achieved
between the particle and wave. In both, the stationary state goes unstable to a dynamic state char-
acterized by a particle surfing its quasi-monochromatic pilot wave. In both, the pilot-wave form
depends explicitly on the particle’s past. Both systems are characterized by two lengthscales, the
scale of particle vibration and the wavelength of the guiding wave. Both systems are character-
ized by in-line speed oscillations with the wavelength of the pilot wave. Both are thus character-
ized by three timescales, the timescale of particle vibration, the timescale of particle translation
and the timescale of in-line oscillations.

Our hydrodynamic quantum field theory has yielded a number of beguiling results in its de-
piction of the free quantum particle. We have shown that, just as a bouncing droplet destabilizes
into a walking droplet at a critical vibrational acceleration, vibration of the free quantum particle
gives rise to translation prescribed by p̄ = ħk, precisely as proposed by de Broglie. Through in-
vocation of the physical analogy between our new hydrodynamic quantum field theory and the
walking-droplet system, one can envisage how the former may give rise to statistical behavior
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consistent with that predicted by standard quantum mechanics in a number of settings. Specifi-
cally, the quasi-monochromatic pilot-wave will impose a dynamic constraint on the particle that
will favor certain quantized states: chaotic motion may then prompt the intermittent switching
between these states and the emergence of multimodal statistics. Moreover, modulations in the
particle speed at the modulation frequency kc and with the de Broglie wavelength may provide
a mechanism for generating quantum statistics in various quantum settings, including quantum
corrals and Friedel oscillations [16, 17, 22, 23].

Our study has extended de Broglie’s mechanics through inclusion of a mechanism for particle-
induced pilot-wave generation based on that arising in pilot-wave hydrodynamics. Our study
would seem to suggest the plausibility of a rational, trajectory-based theory for the dynamics of
free quantum particles. The utility of our approach in rationalizing more complex quantum sys-
tems, including the motion of particles in response to applied forces and boundary interactions,
is currently being examined. Particular attention will be given to coupling this dynamical picture
to the Ensemble Interpretation of quantum mechanics [71], and assessing whether the statistical
behavior of an ensemble of particles evolving according to the dynamics defined herein will be
consistent with the standard formulation of quantum mechanics.
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[45] J. Moláček, J. W. M. Bush, “Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory”, J. Fluid

Mech. 727 (2013a), p. 612-647.
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